Synthetic Photochemistry. Part 44.t Total Synthesis of Ceroplastol II and Albolic Acid, 5-8-5-Membered Tricyclic Sesterterpenoid Insect Wax Constituents, via Stereocontrolled Silyloxy-Cope Rearrangement with a Normally Disfavoured Transition State \ddagger

Nobuo Kato * and Hitoshi Takeshita *
Institute of Advanced Material Study, 86, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816, Japan Hideo Kataoka, Shoji Ohbuchi, and Shinya Tanaka
Graduate School of Engineering Sciences, 39, Kyushu University, Kasuga-koen, Kasuga, Fukuoka 816, Japan

Abstract

To a 1,5 -diene, prepared by CrCl_{2}-mediated condensation of two iridoid synthons, was appended a lactol moiety, which was subjected to a stereocontrolled silyloxy-Cope rearrangement to give, via a normally disfavoured boat transition geometry, a thermolysate, from which the total synthesis of optically active ceroplastol II and albolic acid, 5-8-5-membered tricyclic sesterterpenoids, was accomplished for the first time.

Ceroplastol II (1) ${ }^{1}$ and its congener albolic acid (2) ${ }^{2}$ are sesterterpenoid alcohol and acid, respectively, isolated from the wax secretion of a scale insect, Ceroplastes albolineatus. The ceroplastanes, to which compounds (1) and (2) belong, the ophiobolanes, ${ }^{3}$ and the fusicoccanes ${ }^{4}$ are examples of the 5-8-5membered tricyclic family, whose total synthesis currently attracts considerable interest. However, except for our achievement with cycloaraneosene. ${ }^{5}$ no total synthesis of these natural products has been reported. ${ }^{6}$ Herein, we report the synthesis of compounds (1) and (2).

Results and Discussion

As previously described, ${ }^{7}$ the carbon framework of structure (1) can be constructed by the chromium(II) chloride condensation of two iridoid synthons, Cope rearrangement, and intramolecular eight-membered-ring formation. Since the absolute configuration of C-6 and C-14§ of compounds (1) and (2) are transferred from ($3 R$)-irida-1,8-dien-7-al (3) ${ }^{8}$ and ($3 S, 8 R$)-9-benzyloxy-7-chloroirid-1-ene (4), ${ }^{7}$ the starting material must be the condensate (5) from (3) and (4). Then, to set the correct stereochemistry at $\mathrm{C}-11$, the lactol-regulated Cope rearrangement developed in our recent dictymal synthesis ${ }^{9}$ is utilized. With this method, although the direct silyloxy-Cope rearrangement of the condensate proceeded stereoselectively through a chair transitional geometry, ${ }^{7}$ the rearrangement of the same condensate modified by the fused lactol system can proceed via the desired boat transitional geometry (Scheme 1).

The best selectivity (70% vs 1%) for formation of (5), colourless prisms, m.p. $56.5-57.5^{\circ} \mathrm{C}$, over an epimeric by-product (6), a colourless oil, was obtained when the condensation was carried out with addition of isopropyl alcohol. \uparrow In this case, addition of $\mathrm{Pr}^{\mathrm{i}} \mathrm{OH}$ was essential for obtaining a good product distribution in favour of (5). Otherwise, the ratio of (5):(6) was variable. The product (5) was converted into the trimethylsilyl (TMS) ether (7), which upon treatment with disiamylborane

[^0]and alkaline hydrogen peroxide yielded regio-and stereospecifically a hydroxymethyl derivative (8). Oxidation of compound (8) with pyridinium chlorochromate (PCC) gave a silyloxy aldehyde (9). As already shown, hydroboration of irida1,8 -diene derivatives always occurs stereoselectively to give ($3 S^{*}, 8 R^{*}$)-irid-1-en-9-ols without exception, ${ }^{10}$ the configuration of C-15 in (9) was proposed to be unnatural, the compound was epimerized to an isomeric aldehyde (10) by treatment with potassium fluoride-Florisil. The ${ }^{13} \mathrm{C}$ n.m.r. chemical shifts of the methyl carbons adjacent to the α-carbon of the aldehydes, $\delta 13.0$ for (9) and 7.4 for (10), being in the same order as 10.7 for dehydroiridodial and 7.8 for chrysomelidial, are consistent with the stereochemical formulations. ${ }^{8}$ The product (10) was further hydrolysed with pyridinium toluene- p-sulphonate (PPTS) to form a hydroxy aldehyde (11) (Scheme 2).

Upon heating at $190^{\circ} \mathrm{C}$, TMS ethers (12a) and (12b), derived from (11), respectively underwent Cope rearrangement with retention of the lactol ring as expected, to give the same mixture of thermolysates (13a) and (13b). From isomer (12a), a third thermolysate ($\mathbf{1 3 c}$) was obtained in 32% yield, and its ${ }^{1} \mathrm{H}$ n.m.r. spectrum showed signals due to trimethylsilyl enol ether and aldehyde groups. Therefore, a partial 1,3-silyl migration had occurred prior to the Cope rearrangement, and compound (13c) must be a thermolysate via the chair-formed transition state. Hydrolysis and subsequent sodium borohydride reduction of products (13a) and (13b) produced, via enol lactol (14), a single compound (15); separation of compounds (12) and (13) was, therefore, unnecessary. The C-ring in structure (15) was unambiguously determined to possess the natural configuration from ${ }^{13} \mathrm{C}$ n.m.r. comparison with the spectra of the related compounds (A) ${ }^{5}$ and $(\mathbf{B}),{ }^{9}$ which have both been converted into natural products, cycloaraneosene and dictymal. Namely, an upfield shift for the signal ascribable to the methyl carbon at $\mathrm{C}-11$ and a downfield shift for that of the methylene carbon of C -1 of compound (15) compared with those of (A) clarified the relationship of $\mathrm{C}-10$ and $\mathrm{C}-11$ in structure (15) as being opposite to that in (A). Similar comparison with (B) further supported the above conclusion. Furthermore, the trans relationship between $\mathrm{C}-10$ and $\mathrm{C}-14$ is a common feature in all three structures (15), (A), and (B) since the C-9 atoms have similar δ values. ${ }^{11}$ Therefore, the Cope rearrangement of compound (12) proceeded via a normally disfavoured boat transitional geometry.

One of the two primary alcohol functions in compound (15) was preferentially protected by pivaloyl chloride to give a monoester ($\mathbf{1 6 b}$). Undesired by-products, dipivaloate and iso-

Ceroplastol I (1) $\mathrm{R}=\mathrm{CH}_{2} \mathrm{OH}$ Albolic acid (2) $\mathrm{R}=\mathrm{CO}_{2} \mathrm{H}$

Scheme 1. Synthetic strategy for the synthesis of compounds (1) and (2)

Scheme 2. Reagents and conditions: i, $\mathrm{CrCl}_{3}-\frac{1}{2} \mathrm{LAH}, \mathrm{THF}-\mathrm{DMF}(\mathrm{Pr} \mathrm{OH})[(5), 70 \% ;(6), 1 \%] ;$ ii, TMSCl, $\mathrm{Py}\left(100 \%\right.$); iii, $\left[\mathrm{Me}{ }_{2} \mathrm{CH}-\mathrm{CH}(\mathrm{Me})\right]_{2} \mathrm{BH}$, $\mathrm{H}_{2} \mathrm{O}_{2},{ }^{-} \mathrm{OH}(95 \%)$; iv, $\mathrm{PCC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}(81 \%)$; v, KF-Florisil, MeOH (90%); vi, PPTS, aq. THF (100%); vii, TMSCl, Py [(12a), 27%; (12b), 67\%]; viii, $190^{\circ} \mathrm{C}$ [From (12a); (13a) + (13b) $(4: 1), 48 \%$; (13c), 32%. From (12b); (13a) + (13b), (3:2), 72%]
meric monopivaloate (16a) and (16c), were quantitatively reduced to diol (15) by lithium aluminium hydride. After treatment of monoester ($\mathbf{1 6 b}$) with chloroacetyl chloride, the resultant chloroacetate (17) was debenzylated to the alcohol (18), and this was oxidized to an aldehyde (19). The TMS enol ether (20), prepared by treatment with trimethylsilyl trifluoromethanesulphonate, was oxidized with palladium(II) acetate ${ }^{12}$
to afford an α, β-unsaturated aldehyde (21) in good yield. Differentiative deacylation, along with a reduction of the enal moiety, of compound (21) by means of sodium borohydride and cerium(III) chloride ${ }^{13}$ easily produced a diol (22), which was converted into the dialdehyde (23) (Scheme 3). The titanium(II) chloride-mediated reductive cyclization ${ }^{14}$ of compound (23) under dilute conditions gave a single glycol (24). The stereo-

$i\left[\begin{array}{l}(13 a) R=-- \text { OTMS } \\ (13 b) R=- \text { OTMS }\end{array}\right]$

(A)

(B)

(23)

(22)

(21)
(20)

Scheme 3. Reagents and conditions: i, PPTS, aq. THF (97%); ii, NaBH_{4}, aq. $\mathrm{NaHCO}{ }_{3}-\mathrm{MeOH}(95 \%)$; iii, $\mathrm{Me}_{3} \mathrm{CCOCl}, \mathrm{Py}[(\mathbf{1 6 a}), 8 \%$; ($\mathbf{1 6 b}$), 48%.
 $\mathrm{Et}_{3} \mathrm{~N}(95 \%)$; viii, $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{TMS}, \mathrm{Et}_{3} \mathrm{~N}(98 \%)$; ix, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{MeCN}(94 \%) ; \mathrm{x}, \mathrm{NaBH} \mathrm{Na}_{4}-\mathrm{CeCl}_{3}, \mathrm{MeOH}(93 \%) ;$ xi, $=$ reagent vii (93%)
chemistry of this glycol was deduced spectroscopically as depicted. Namely, in the ${ }^{1} \mathrm{H}$ n.m.r. spectrum, a singlet signal ascribable to the x-oriented C -11 methyl group appeared at $\delta 0.81$, indicating the secondary hydroxy group at C-9 to be β-oriented; because, if it were α-oriented, the C-11 methyl should appear at $\delta 1.1-1.2$ by the anisotropic effect of a $s y n$-oriented hydroxy group. ${ }^{5,7}$ The stereochemistry of another hydroxy group (at C-8), however, could not be deduced unambiguously, although $J_{8.9}$ and $J_{9.10}$ were determined as 8.5 and 8.0 Hz , respectively.* Birch reduction of the diacetate (25) of diol (24) gave the bis-deacetoxylated compound (26) as a major product. The double-bond isomers (27) and (28) and a diol (29) were also obtained as minor by-products (Scheme 4). Since the diacetate (30) of diol (29) afforded none of the products (26)-(28) under the same conditions, it is clear that the bis-deacetoxylation was performed via the conjugate diene (C). The n.m.r. spectral data of compound (26) assured us that it possessed the correct $\mathrm{C}_{15}-\mathrm{C}_{16}$-degraded pentanor-derivative structure of target molecules (1) and (2).

The final step of the synthesis was a conventional C_{5} -

[^1]elongation of the side chain; i.e., the toluene-p-sulphonyl ester (31) of the alcohol (26) was condensed with dimethyl sodiomalonate to give (32), which was decarboxylated to ester (33), LiAlH_{4} (LAH) reduction of which gave the alcohol (34), which was oxidized with oxalyl dichloride-dimethyl sulphoxide (DMSO) to an aldehyde (35). Wittig reaction of (35) with ethyl 2-(triphenylphosphoranylidene)propionate gave the (E)- α, β unsaturated ester, ethyl albolate (36), a portion of which was reduced to the alcohol which was thought to be (1). ${ }^{1}$ Since sufficient data were not reported in ref. 1, the identity of synthetic (1) with the natural product was confirmed by derivation to the same 3,5-dinitrobenzoate (37) from the synthetic (1) and from isomerization of the natural 3,5dinitrobenzoate (38) of ceroplastol $\mathrm{I},{ }^{15}$ which was kindly provided by Drs. I. T. Harrison and S. Harrison. Further, synthetic (1) was identical in every respect, including the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ n.m.r. spectral data with a sample prepared by saponification of natural (37). The rest of compound (36) was hydrolysed with base to give the acid (2) (Scheme 5) which was almost identical with the natural albolic acid, although its n.m.r. data showed some minor discrepancies with those reported. ${ }^{2}$

In conclusion, the 5-8-5-membered tricyclic sesterterpenoids have now been totally synthesized for the first time. The lactolregulated Cope rearrangement is certainly versatile and can be applied on various occasions.

Scheme 4. Reagents and conditions: i, $\mathrm{TiCl}_{4}-\mathrm{Zn}$, THF (96%); ii, $\mathrm{Ac}_{2} \mathrm{O}$, $\mathrm{Py}\left(93 \%\right.$); iii, Li , liq. $\mathrm{NH}_{3}-\mathrm{EtOH}[(\mathbf{2 6}), 76 \%$; (27), 10\%; (28), 7\%; (29), 4\%]; $\mathrm{iv},=$ reagent ii $(99.5 \%) ; \mathrm{v},=$ reagent $\mathrm{iii}(97 \%)$

(2)

Ceroplastol I R $=\mathbf{H}$
(38) $R=\mathrm{COC}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2}$
$\mathrm{R}=\mathrm{COC}_{6} \mathrm{H}_{3}\left(\mathrm{NO}_{2}\right)_{2} \xrightarrow{\text { ix }}$

(32)

(36)
\downarrow vii

(33)
(1) $\mathrm{R}=\mathrm{H} \quad$ viii \quad (37) $\mathrm{R}=\mathrm{COCH}$
$T s=-\mathrm{S}\left(\mathrm{O}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{Me}-p\right.$

Scheme 5. Reagents and conditions: i, TsCl, Py (100%); ii, $\mathrm{NaCH}\left(\mathrm{CO}_{2} \mathrm{Me}\right)_{2}, \mathrm{DMF}(81 \%)$; iii, $\mathrm{NaCN}, \mathrm{DMF}, \mathrm{CH}_{2} \mathrm{~N}_{2}(71 \%)$; iv, $\mathrm{LAH}, \mathrm{THF}(100 \%)$; $\mathrm{v},(\mathrm{COCl})_{2}-\mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}(80 \%) ;$ vi, $\mathrm{Me}\left(\mathrm{PPh}_{3}=\right) \mathrm{CCO}_{2} \mathrm{Et}^{2} \mathrm{C}_{6} \mathrm{H}_{6}(93 \%) ;$ vii, $=$ reagent iv $(75 \%) ;$ viii, $3,5-\left(\mathrm{NO}_{2}\right)_{2}\left(\mathrm{C}_{6} \mathrm{H}_{3}\right) \mathrm{COCl}, \mathrm{Py}(100 \%) ; \mathrm{ix}, \mathrm{TsOH}$, acetone (82%); х, 3 m NaOH , MeOH (95%).

Experimental

Elemental analyses were carried out by Miss S. Hirashima, of the Institute of Advanced Material Study, Kyushu University. N.m.r. spectra were measured by a JEOL FX 100 spectrometer for solutions in CDCl_{3} solution, unless otherwise specified. Mass spectra were measured with a JEOL 01SG-2 spectrometer. I.r. spectra were taken as KBr disks or as a liquid film inserted between NaCl plates using a Jasco IR-A 102 spectrometer. The optical rotations were measured with a Union Model PM-101 apparatus. The solvents used in the reactions were carefully dehydrated and distilled under N_{2} atmosphere immediately before use; therefore, they were anhydrous unless otherwise stated.

Improved Chromium(iI) Chloride-mediated Condensation ${ }^{16}$ of Compounds (3) ${ }^{8}$ and (4). ${ }^{7}$ Formation of Alcohols (5) and (6).A stirred tetrahydrofuran (THF) suspension (100 ml) of CrCl_{3} $(10.29 \mathrm{~g})$ was treated with powdered $\mathrm{LiAlH}_{4}(\mathrm{LAH})(1.24 \mathrm{~g})$ at $0-5^{\circ} \mathrm{C}$. After the evolution of H_{2} had ceased, the mixture was allowed to attain room temperature and $\operatorname{Pri} \mathrm{OH}(2.5 \mathrm{ml})$ was added. While the mixture was agitated by ultrasonic vibration, N, N-dimethylformamide (DMF) (100 ml) was added. To the mixture at $0-5{ }^{\circ} \mathrm{C}$ were consecutively added the compounds (3) $(6.10 \mathrm{~g})$ and $(4)(7.55 \mathrm{~g})$. The mixture was diluted with water, extracted with EtOAc, and the extract was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Silica gel column chromatography of the extract yielded alcohol (5) as prisms $\left(7.45 \mathrm{~g}, 70 \%\right.$), m.p. $56.5-57.5^{\circ} \mathrm{C}$ (Found: C, 82.4 ; $\mathrm{H}, 9.7 . \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{2}$ requires: C, $82.18 ; \mathrm{H}, 9.71 \%$); $m / z 394\left(M^{+}\right)$; $[x]_{\mathrm{D}}^{19}-144.9^{\circ}\left(c 2.07\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 1.07(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}), 1.62(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.93(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.18(1 \mathrm{H}, \mathrm{t}, J 8.5 \mathrm{~Hz})$, $3.22(1 \mathrm{H}, \mathrm{br}$ m), $3.45(1 \mathrm{H}, \mathrm{dd}, J 8.5,4 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.42$ $(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.64(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.67$ $(1 \mathrm{H}, \mathrm{m}), 4.93(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 4.99(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz})$, and 7.27 ($5 \mathrm{H}, \mathrm{br} \mathrm{s}$); $\delta_{\mathrm{c}} 16.70(\mathrm{q}), 17.24(\mathrm{q}), 19.34(\mathrm{q}), 23.29(\mathrm{q}), 25.29(\mathrm{t})$, 28.47 (t), 34.67 (t), 35.35 (d), 39.11 (t$), 48.29$ (d), 52.73 (s), 58.79 (d), 72.80 (t), 73.09 (t), 75.10 (d), 106.39 ($t), 110.89$ (t$), 127.54$ (d), 127.64 (d, 2 C), 128.41 (d, 2 C), 135.98 (s), 138.96 (s), 139.06 (s), $148.77(\mathrm{~s})$, and $160.64(\mathrm{~s}) ; v_{\text {max. }} 3515,2950,2860,1639,1444$, $1365,1086,1074,881$, and $727 \mathrm{~cm}^{-1}$; and alcohol (6) as an oil, ($110 \mathrm{mg}, 1 \%$) (Found: C, 82.1; H, 9.8%); $[\alpha]_{\mathrm{D}}{ }^{8}-106.4^{\circ}(c$ 1.25 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.87(3 \mathrm{H}, \mathrm{s}), 1.11(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.73(6 \mathrm{H}$, br s), $2.22(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 3.21(1 \mathrm{H}, \mathrm{t}, J 8.5 \mathrm{~Hz}), 3.38(1 \mathrm{H}, \mathrm{br} \mathrm{m})$, $3.48(1 \mathrm{H}, \mathrm{dd}, J 8.5,3.5 \mathrm{~Hz}), 4.41(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J$ $12 \mathrm{~Hz}), 4.55(1 \mathrm{H}, \mathrm{d}, J 5 \mathrm{~Hz}), 4.65(1 \mathrm{H}, \mathrm{m}), 4.73(1 \mathrm{H}, \mathrm{m}), 4.93(1$ $\mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 4.97(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz})$, and $7.27(5 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}} 15.04$ $(\mathrm{q}), 17.28(\mathrm{q}), 20.17(\mathrm{q}), 25.49(\mathrm{t}), 25.88(\mathrm{q}), 29.59(\mathrm{t}), 33.15(\mathrm{t})$, 34.37 (d), 37.30 (t), 50.00 (d), 52.20 (s), 53.76 (d), 72.95 (t), 73.09 (t$), 75.88$ (d), 104.59 (t), 109.57 (t), 127.54 (d), 127.64 (d, 2 C), 128.46 (d, 2 C), 135.55 (s), 139.11 (s), 139.59 (s), 152.29 (s), and $160.74(\mathrm{~s}) ; v_{\text {max }} 3565,2950,2865,1640,1454,1369,1100$, 890,735 , and $697 \mathrm{~cm}^{-1}$.

TMS Ether (7) of Compound (5).-A pyridine solution (60 ml) of compound (5) $(7.07 \mathrm{~g})$ was treated with $\mathrm{TMSCl}(4.5 \mathrm{ml})$ under N_{2} at $20^{\circ} \mathrm{C}$ for 15 h . The mixture was then diluted with aq. NaHCO_{3} and extracted with hexane-ether (1:1). Silica gel column chromatography of the extract with hexane-EtOAc (100:1) yielded the silyl ether (7) as an oil ($8.33 \mathrm{~g}, 100 \%$) (Found: C, 77.4; $\mathrm{H}, 10.1 . \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{2} \mathrm{Si}$ requires: $\mathrm{C}, 77.20 ; \mathrm{H}, 9.93 \%$); $[x]_{\mathrm{D}}^{18}-152.0^{\circ}\left(c 2.21\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.05(9 \mathrm{H}, \mathrm{s}), 1.00(3 \mathrm{H}, \mathrm{s})$, $1.09(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.60(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.86(3 \mathrm{H}, \mathrm{brs}), 3.18(1 \mathrm{H}, \mathrm{t}$, $J 8.5 \mathrm{~Hz}), 3.22(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.47(1 \mathrm{H}, \mathrm{dd}, J 8.5,4 \mathrm{~Hz}), 4.04(1 \mathrm{H}$, br s), $4.42(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.63(2 \mathrm{H}, \mathrm{m})$, $4.86(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 4.89(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz})$, and $7.27(5 \mathrm{H}, \mathrm{br} \mathrm{s})$; $\delta_{\mathrm{C}} 0.39(\mathrm{q}, 3 \mathrm{C}), 16.60(\mathrm{q}), 17.38(\mathrm{q}), 19.38(\mathrm{q}), 25.78(\mathrm{t}), 26.51(\mathrm{q})$, 28.56 (t), 33.50 (t), 34.86 (d), 39.21 (t), 49.46 (d), 52.54 (s), 57.76 (d), 73.05 (t, 2 C), 77.93 (d), 106.25 (t), 111.08 (t), 127.54 (d, 3 C), 128.46 (d, 2 C), 136.77 (s), 138.33 (s), 139.11 (s), 148.77
(s), and 160.01 (s); $v_{\text {max. }} 2955,2865,1640,1451,1368,1248$, 1073,883 , and $838 \mathrm{~cm}^{-1}$.

Hydroboration of Alkene (7) to Alcohol (8) and Further PCC Oxidation to Aldehyde (9).-A THF solution (70 ml) of compound (7) $(5.00 \mathrm{~g})$ was treated with disiamylborane [prepared from 2-methylbut-2-ene (7.2 ml), $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}(3.9 \mathrm{ml})$, and $\left.\mathrm{NaBH}_{4}(1.1 \mathrm{~g})\right]$ at room temperature for 3.5 h and then treated with alkaline hydrogen peroxide $\left[35 \% \mathrm{H}_{2} \mathrm{O}_{2}(21 \mathrm{ml})\right.$ and 3 M $\mathrm{NaOH}(25 \mathrm{ml})$] to give, after usual work-up and chromatography, alcohol (8) as an oil ($4.94 \mathrm{~g}, 95 \%$) (Found: C, 74.2 ; $\mathrm{H}, 9.95 . \mathrm{C}_{30} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{Si}$ requires: $\mathrm{C}, 74.33 ; \mathrm{H}, 9.98 \%$; $[\alpha]_{\mathrm{D}}^{25}$ $-6.2^{\circ}\left(c 0.33\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}} 0.13(9 \mathrm{H}, \mathrm{s}), 0.90(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, $1.03(3 \mathrm{H}, \mathrm{s}), 1.08(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.85(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.58(1 \mathrm{H}, \mathrm{br}$ m), $3.19(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.28(1 \mathrm{H}, \mathrm{dd}, J 11,8.5 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{dd}$, $J 9,3 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{dd}, J 11,4.5 \mathrm{~Hz}), 4.23(1 \mathrm{H}, \mathrm{br}$ s), 4.43 $(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.46(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz})$, $4.89(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz})$, and $7.27(5 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}} 0.35(\mathrm{q}, 3 \mathrm{C}), 16.82$ $(\mathrm{q}), 17.18(\mathrm{q}), 17.35(\mathrm{q}), 23.35(\mathrm{t}), 25.77(\mathrm{t}), 27.12(\mathrm{q}), 33.00(\mathrm{t})$, 34.77 (d), 37.36 (t), 39.18 (t), 49.71 (d), 52.71 (s), 53.77 (d), 64.83 (t$), 73.12$ (t, 2 C), 78.18 (d), 105.66 (t), 127.71 (d, 3 C), 128.48 (d, 2 C), 137.07 (s), 138.13 (s), 139.07 (s), and 160.60 (s); $v_{\text {max. }}$ $3500,2960,2880,1640,1450,1252,1121,1070,880$, and $840 \mathrm{~cm}^{-1}$.

Subsequently, a stirred $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (100 ml) of compound (8) $(2.86 \mathrm{~g})$ was treated with $\mathrm{AcONa}(1.3 \mathrm{~g})$, Celite $(2.14 \mathrm{~g})$, and PCC (2.54 g) consecutively under N_{2} for 6 h . The mixture was then passed through a short Florisil column, and further chromatography on a silica gel column [hexane-EtOAc ($30: 1$)] gave aldehyde (9) as an oil ($2.30 \mathrm{~g}, 81 \%$) (Found: C, 74.4; $\mathrm{H}, 9.7 . \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}$ requires: $\mathrm{C}, 74.64 ; \mathrm{H}, 9.60 \%$); $m / z 482\left(\mathrm{M}^{+}\right)$; $[x]_{\mathrm{D}}^{18}-25.9^{\circ}\left(c 0.62\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.09(9 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}), 1.05(3 \mathrm{H}, \mathrm{s}), 1.09(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.87(3 \mathrm{H}, \mathrm{br}$ s), 3.40 $(1 \mathrm{H}, \mathrm{t}, J 8.5 \mathrm{~Hz}), 3.48(1 \mathrm{H}, \mathrm{dd}, J 8.5,4 \mathrm{~Hz}), 4.27(1 \mathrm{H}, \mathrm{br}$ s), 4.43 $(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz})$, $4.90(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}), 7.27(5 \mathrm{H}, \mathrm{br} \mathrm{s})$, and $9.68(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz})$; $\delta_{\mathrm{C}} 0.35(\mathrm{q}, 3 \mathrm{C}), 13.00(\mathrm{q}), 16.77(\mathrm{q}), 17.30(\mathrm{q}), 24.94(\mathrm{t}), 25.88(\mathrm{t})$, 27.30 (q), 32.94 (t), 34.83 (d), 38.89 (t), 47.94 (d), 49.89 (d), 52.71 (s$), 52.71$ (d), 73.12 (t, 2 C), 78.34 (d), 105.77 (t), 127.66 (d, 3 C), 128.48 (d, 2 C), 135.83 (s), 139.07 (s), 139.78 (s), 160.83 (s$)$, and 206.30 (d); $v_{\text {max. }} 2955,2875,1725,1645,1476,1251,1070$, 881 , and $840 \mathrm{~cm}^{-1}$.

KF-catalysed Epimerization of (9) to (10). -An MeOH solution (75 ml) of aldehyde (9) (1.61 g) was treated with KF $(6 \mathrm{~g})$ and Florisil (6 g) at room temperature for 15 h . The mixture was then diluted with ether and solid materials were filtered off. The filtrate was diluted with water and extracted with EtOAc, and the extract was dried on $\mathrm{K}_{2} \mathrm{CO}_{3}$. The residue obtained by evaporation of the solvent was chromatographed on a silica gel column to give compound (10) as an oil $(1.44 \mathrm{~g}$, 90% [94% based on the consumed aldehyde (9)] (Found: $\mathrm{C}, 74.7 ; \mathrm{H}, 9.8 . \mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}$ requires: $\mathrm{C}, 74.64 ; \mathrm{H}, 9.60 \%$); $[\alpha]_{\mathrm{D}}^{18}$ $-102.3^{\circ}\left(c 2.17 \mathrm{in} \mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.09(9 \mathrm{H}, \mathrm{s}), 0.95(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, $1.04(3 \mathrm{H}, \mathrm{s}), 1.10(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.88(3 \mathrm{H}, \mathrm{br}$ s), $2.67(1 \mathrm{H}$, br qd, $J 7,3 \mathrm{~Hz}$), $3.18(1 \mathrm{H}, \mathrm{br}$ m), $3.20(1 \mathrm{H}, \mathrm{dd}, J 9,8 \mathrm{~Hz}), 3.48$ $(1 \mathrm{H}, \mathrm{dd}, J 9,4 \mathrm{~Hz}), 4.09(1 \mathrm{H}, \mathrm{br} s), 4.43(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.47$ $(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.87(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 4.91(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}), 7.27$ $(5 \mathrm{H}, \mathrm{br} \mathrm{s})$, and $9.50(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}} 0.35(\mathrm{q}, 3 \mathrm{C}), 7.35(\mathrm{q}), 16.82(\mathrm{q})$, $17.30(\mathrm{q}), 23.35(\mathrm{t}), 25.94(\mathrm{t}), 27.24(\mathrm{q}), 33.00(\mathrm{t}), 34.88(\mathrm{~d}), 39.53$ (t), 48.18 (d), 48.65 (d), 49.89 (d), 52.71 (s$), 73.18$ (t, 2 C), 77.89 (d), 105.71 (t), 127.66 (d, 3 C), 128.48 (d, 2 C), 134.42 (s), 139.07 (s), 139.95 (s), 160.89 (s), and 205.01 (d); $v_{\text {max. }} 2955,2870,2700$, $1726,1640,1454,1249,1064,884,838,745,735$, and $698 \mathrm{~cm}^{-1}$; and some recovered aldehyde (9) ($76 \mathrm{mg}, 5 \%$).

Formation of Lactol TMS Ether (12) via Alcohol (11) from TMS Ether (10).-A solution of compound (10) (1.74 g) in a
mixture of THF (200 ml) and water (50 ml) containing pyridinium toluene- p-sulphonate (PPTS) (5 g) was kept at room temperature for 48 h . After dilution with water, the mixture was extracted with ether and chromatographed on a silica gel column to give, from hexane-EtOAc (10:1), the alcohol (11) as an oil ($1.595 \mathrm{~g}, 100 \%$) (Found: $\mathrm{C}, 78.8 ; \mathrm{H}, 9.5 . \mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3}$ requires: $\left.\mathrm{C}, 78.98 ; \mathrm{H}, 9.33 \%) ;[\alpha]_{\mathrm{D}}^{18}-72.1^{\circ}(c 1.22 \text { in } \mathrm{CHCl})_{3}\right)$; $v_{\text {max. }} 3410,2950,2865,1718,1640,1452,1364,1097,1043$, 732 , and $698 \mathrm{~cm}^{-1}$; the n.m.r. spectra were too complicated to be assigned due to the tautomeric nature of compound (11).

Subsequently, alcohol (11) (440 mg) was converted into the TMS ethers ($\mathbf{1 2 a}$), an oil ($142 \mathrm{mg}, 27 \%$); (Found: C, $74.4 ; \mathrm{H}, 9.5$. $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}$ requires: $\left.\mathrm{C}, 74.64 ; \mathrm{H}, 9.60 \%\right] ;[\alpha]_{\mathrm{D}}^{19}+14.6^{\circ}$ $\left(c 2.26\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathbf{H}} 0.12(9 \mathrm{H}, \mathrm{s}), 0.78(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.10(3 \mathrm{H}$, $\mathrm{d}, J 7 \mathrm{~Hz}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.6(2 \mathrm{H}, \mathrm{m}), 3.25(1 \mathrm{H}, \mathrm{t}, J$ $8.5 \mathrm{~Hz}), 3.53(1 \mathrm{H}, \mathrm{dd}, J 8.5,4 \mathrm{~Hz}), 4.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}), 4.43(1 \mathrm{H}, \mathrm{d}, J$ $12 \mathrm{~Hz}), 4.48(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.82(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 4.86(1 \mathrm{H}, \mathrm{d}$, $J 3 \mathrm{~Hz}), 4.98(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz})$, and $7.27\left(5 \mathrm{H}\right.$, br s); $\delta_{\mathrm{C}} 0.20(\mathrm{q}, 3 \mathrm{C})$, 14.75 (q), 17.09 (q), 18.31 (q), 25.59 (t), 26.22 (q), 26.76 (t), 34.52 (t), 36.33 (d), 40.48 (t), 45.70 (d), 47.46 (d), 48.63 (s), 50.20 (d), 73.14 (t), 73.44 (t), 73.78 (d), 95.41 (d), 106.39 (t), 127.54 (d), 127.68 (d, 2 C), 127.68 (s), 128.46 (d, 2 C), 131.45 (s), 139.06 (s), and $159.08(\mathrm{~s}) ; v_{\max } 2960,2880,1642,1454,1367,1252$, 1002,894 , and $840 \mathrm{~cm}^{-1}$; and ($\mathbf{1 2 b}$), an oil ($327 \mathrm{mg}, 62 \%$) (Found: C, $74.4 ; \mathrm{H}, 9.55 \%$); $[\alpha]_{\mathrm{D}}^{18}-73.0^{\circ}\left(c 2.37\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}}$ $0.16(9 \mathrm{H}, \mathrm{s}), 0.86(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.11(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.18(3 \mathrm{H}$, s), $1.60(3 \mathrm{H}, \mathrm{br}$ s $), 2.60(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.27(1 \mathrm{H}, \mathrm{dd}, J 9,8 \mathrm{~Hz}), 3.52$ $(1 \mathrm{H}, \mathrm{dd}, J 9,4 \mathrm{~Hz}), 3.88(1 \mathrm{H}, \mathrm{br}$ s), $4.38(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}), 4.43(1$ $\mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.45(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.83(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 4.85$ $(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz})$, and $7.26(5 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}} 0.41(\mathrm{q}, 3 \mathrm{C}), 14.71(\mathrm{q})$, $16.94(\mathrm{q}), 18.06(\mathrm{q}), 25.77(\mathrm{t}), 26.65(\mathrm{q}), 27.00(\mathrm{t}), 34.30(\mathrm{t}), 36.36$ (d), $40.94(\mathrm{t}), 47.71(\mathrm{~d}, 2 \mathrm{C}), 49.00(\mathrm{~s}), 55.42(\mathrm{~d}), 73.12(\mathrm{t}), 73.42(\mathrm{t})$, 81.65 (d), 102.42 (d), 106.01 (t), 127.54 (d), 127.66 (d, 2 C), 128.42 (d, 2 C), $128.95(\mathrm{~s}), 131.19(\mathrm{~s}), 139.07(\mathrm{~s})$, and $159.36(\mathrm{~s}) ; v_{\text {max. }}$ $2955,2925,1642,1454,1248,1045,880$, and $840 \mathrm{~cm}^{-1}$.

Cope Rearrangement of Compound (12a) to Isomers (13a) and (13b)--(a) A toluene solution (4.9 ml) of compound (12a) $(98 \mathrm{mg})$ was heated in a sealed tube at $190^{\circ} \mathrm{C}$ for 24 h . Silica gel column chromatography of the mixture gave the isomers (13a) and (13b) ($4: 1$) as an oil ($47 \mathrm{mg}, 48 \%$) [Found: C, $74.5 ; \mathrm{H}, 9.6$ (mixture). $\mathrm{C}_{30} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}$ requires: $\mathrm{C}, 74.64 ; \mathrm{H}, 9.60 \%$]; $m / z 482$ $\left(M^{+}\right) ; \delta_{\mathbf{H}}(13 a) 0.12(9 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}), 1.12(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{br}$ s $), 2.80(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.10(1 \mathrm{H}, \mathrm{t}$, $J 9 \mathrm{~Hz}), 3.27(1 \mathrm{H}, \mathrm{dd}, J 9,4 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.44$ $(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 5.07(1 \mathrm{H}, \mathrm{d}, J 2.5 \mathrm{~Hz}), 6.04(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz})$, and $7.28\left(5 \mathrm{H}\right.$, br s); $\delta_{\mathrm{H}}(\mathbf{1 3 b}) 0.19(9 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, $1.03(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.09(3 \mathrm{H}, \mathrm{s}), 1.57(3 \mathrm{H}, \mathrm{br}$ s), $2.78(1 \mathrm{H}$, br m) , $3.10(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.26(1 \mathrm{H}, \mathrm{dd}, J 9,4 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{d}$, $J 12 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.78(1 \mathrm{H}, \mathrm{d}, J 8 \mathrm{~Hz}), 6.17(1 \mathrm{H}, \mathrm{d}$, $J 3 \mathrm{~Hz})$, and $7.27\left(5 \mathrm{H}\right.$, br s); $v_{\text {max. }} 2960,1675,1455,1372$, $1255,1085,1015,962,937,842,735$, and $698 \mathrm{~cm}^{-1}$; together with liberated aldehyde (13c) as an oily mixture of epimers at $\mathrm{C}-15(31 \mathrm{mg}, 32 \%)(5: 3)$ (Found: C, $74.8 ; \mathrm{H}, 9.8 \%$); $\delta_{\mathrm{H}} 0.81(9 \mathrm{H}$, s), $1.01(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.04$ and $1.08(5: 3 ; 3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.09(3$ $\mathrm{H}, \mathrm{s}), 3.12(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.27(1 \mathrm{H}$, dd, $J 9,3.5 \mathrm{~Hz}), 4.37(1 \mathrm{H}, \mathrm{d}$, $J 12 \mathrm{~Hz}), 4.47(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 5.97$ and $6.04(5: 3 ; 1 \mathrm{H}, \mathrm{d}, J 2.5$ $\mathrm{Hz}), 7.30(5 \mathrm{H}, \mathrm{br} \mathrm{s})$, and 9.68 and $9.71(5: 3 ; 1 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz}) ; v_{\text {max }}$ $2955,2870,2700,1728,1667,1454,1155,1111,844$, and 695 cm^{-1}.
(b) Similarly, a toluene solution (10.4 ml) of compound ($\mathbf{1 2 b}$) (208 mg) was heated in a sealed tube at $180^{\circ} \mathrm{C}$ for 24 h to give compounds (13a) and (13b) $(3: 2 ; 150 \mathrm{mg}, 72 \%)$.

PPTS Hydrolysis of Compound (13) to Alcohol (14) and its Reduction to Diol (15).-A mixture of compounds (13) (613 mg) was hydrolysed in THF (15 ml) and water (4 ml) with PPTS $(200 \mathrm{mg})$ at room temperature for 15 h . The mixture was diluted
with water, extracted with ether, and chromatographed on a silica gel column to give an oily epimeric mixture of lactol (14) $(507 \mathrm{mg}, 97 \%$), of which the β-anomer was crystallized from hexane as prisms, m.p. $81-83^{\circ} \mathrm{C}$ (Found: C, 78.9; H, 9.3. Calc. for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{O}_{3} ; \mathrm{C}, 78.98 ; \mathrm{H}, 9.33 \%$); $v_{\text {max. }} 3380,2955,2875$, $1673,1453,1119,736$, and $693 \mathrm{~cm}^{-1}$.

Then, an MeOH solution (30 ml) of alcohol (14) $(998 \mathrm{mg}$) was treated with a mixture of aq. $\mathrm{NaHCO}_{3}(8 \mathrm{ml})$ and NaBH_{4} (260 mg) at $0-5^{\circ} \mathrm{C}$ for 1 h . The mixture was then diluted with water, extracted with EtOAc, and the extract was dried over $\mathrm{K}_{2} \mathrm{CO}_{3}$. Silica gel chromatography of the extract gave diol (15) as an oil ($985 \mathrm{mg}, 95 \%$) (Found: $\mathrm{C}, 78.0 ; \mathrm{H}, 10.4 . \mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{3}$ requires: $\mathrm{C}, 78.21 ; \mathrm{H}, 10.21 \%$; $[\alpha]_{\mathrm{D}}^{21}-22.7^{\circ}(c 1.32$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.84(3 \mathrm{H}, \mathrm{s}), 0.91(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.02(3 \mathrm{H}, \mathrm{d}, J 7$ $\mathrm{Hz}), 1.60(3 \mathrm{H}$, br s $), 2.72(1 \mathrm{H}$, br m$), 3.10(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.25(1$ $\mathrm{H}, \mathrm{dd}, J 9,4.5 \mathrm{~Hz}), 3.41(1 \mathrm{H}$, dd, $J 11,5 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{dd}, J 10.5$, $8.5 \mathrm{~Hz}), 3.66(1 \mathrm{H}, \mathrm{dd}, J 11,4 \mathrm{~Hz}), 3.72(1 \mathrm{H}, \mathrm{dd}, J 10.5,5 \mathrm{~Hz})$, $4.40(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz})$, and $7.25(5 \mathrm{H}, \mathrm{br} \mathrm{s})$; $\delta_{\mathrm{C}} 13.82(\mathrm{q}), 15.09(\mathrm{q}), 17.04(\mathrm{q}), 21.92(\mathrm{q}), 23.58(\mathrm{t}), 25.73(\mathrm{t})$, 37.26 (t, 2 C), 34.72 (d), 39.60 (d), 39.60 (t), 43.41 (d), 46.44 (s$)$, 51.22 (d), 53.12 (d), 64.26 (t), 66.41 (t), 72.41 (t), $73.09(\mathrm{t}), 127.49$ (d), 127.59 (d, 2 C), 128.37 (d, 2 C), 135.16 (s), 135.49 (s), and $138.87(\mathrm{~s}) ; v_{\text {max. }} 3310,2955,1454,1372,1048,730$, and 695 cm^{-1}.

Selective Esterification of Diol (15) by Pivaloyl Chloride to give Monoester (16b).- $\mathrm{A} \mathrm{CH} \mathrm{Cl}_{2}$ solution (10 ml) of diol (15) $(588 \mathrm{mg}), \mathrm{Et}_{3} \mathrm{~N}(0.2 \mathrm{ml})$, and 4-(dimethylamino)pyridine (DMAP) $(20 \mathrm{mg})$ was treated with $\mathrm{Me}_{3} \mathrm{CCOCl}(0.17 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$. The mixture was then treated with aq. NaHCO_{3} and extracted with ether. The residue obtained by removal of the solvent was chromatographed on a silica gel column to give mono ester ($\mathbf{1 6 b}$) as an oil ($339 \mathrm{mg}, 48 \%$) (Found; C, $77.0 ; \mathrm{H}$, 10.1. $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}$ requires; $\mathrm{C}, 77.06 ; \mathrm{H}, 10.10^{\%} \%$; $[\alpha]_{\mathrm{D}}^{15}-16.3^{\circ}(c$ 1.53 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.89(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.90(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}), 1.19(9 \mathrm{H}, \mathrm{s}), 1.61(3 \mathrm{H}$, br s), $3.10(1 \mathrm{H}, \mathrm{dd}, J 9,8 \mathrm{~Hz})$, $3.27(1 \mathrm{H}, \mathrm{dd}, J 9,4.5 \mathrm{~Hz}), 3.55(1 \mathrm{H}, \mathrm{dd}, J 11,6 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{dd}$, $J 11,6 \mathrm{~Hz}), 3.83(1 \mathrm{H}, \mathrm{dd}, J 11,6.5 \mathrm{~Hz}), 3.97(1 \mathrm{H}, \mathrm{dd}, J 11,6.5$ $\mathrm{Hz}), 4.40(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.44(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz})$, and $7.28(5 \mathrm{H}$, br s); $\delta_{\mathrm{c}} 11.72$ (q), 15.04 (q), 16.94 (q), 21.97 (q), 23.68 (t, 2 C), 27.15 (q, 3 C), 34.67 (d), 35.11 (d), 37.16 (t), 37.60 (t), 38.72 (s), $39.60(\mathrm{t}), 43.16$ (d), 46.04 (s), 51.90 (d), 53.03 (d), 63.82 (t), 69.04 (t), $72.36(\mathrm{t}), 73.00(\mathrm{t}), 127.39(\mathrm{~d}), 127.49(\mathrm{~d}, 2 \mathrm{C}), 128.27(\mathrm{~d}, 2 \mathrm{C})$, $135.30(\mathrm{~s}, 2 \mathrm{C}), 138.87(\mathrm{~s})$, and $178.66(\mathrm{~s}) ; v_{\text {max. }} 3460,2955,1728$, $1455,1283,1160,736$, and $698 \mathrm{~cm}^{-1}$; together with dipivaloate (16a) $\left(62 \mathrm{mg}, 8 \%\right.$) (Found: $\mathrm{C}, 76.2 ; \mathrm{H}, 10.0 . \mathrm{C}_{37} \mathrm{H}_{58} \mathrm{O}_{5}$ requires: C, $76.25 ; \mathrm{H}, 10.03 \%) ; m / z 582\left(M^{+}\right) ; \delta_{\mathrm{H}} 0.86(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.89$ $(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.19(18 \mathrm{H}, \mathrm{s}), 1.59(3 \mathrm{H}, \mathrm{br}$ s), 2.69 $(1 \mathrm{H}, \mathrm{br} m), 3.10(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.45(1 \mathrm{H}, \mathrm{dd}, J 9,4 \mathrm{~Hz}), 3.8-4.1$ $(4 \mathrm{H}, \mathrm{m}), 4.39(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz})$, and $7.28(5$ H, br s); $v_{\text {max. }} 2960,1728,1481,1453,1280,1145,733$, and $696 \mathrm{~cm}^{-1}$; and an isomeric monoester (16c) as an oil $(249 \mathrm{mg}$, 35%) (Found: $\mathrm{C}, 76.8 ; \mathrm{H}, 10.0 . \mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4}$ requires: $\mathrm{C}, 77.06$; $\mathrm{H}, 10.10 \%) ; \delta_{\mathrm{H}} 0.84(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.91(3 \mathrm{H}, \mathrm{s}), 1.03(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}), 1.19(9 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}$, br s $), 2.70(1 \mathrm{H}$, br m$), 3.10(1 \mathrm{H}, \mathrm{t}$, $J 9 \mathrm{~Hz}), 3.44(1 \mathrm{H}, \mathrm{dd}, J 9,4.5 \mathrm{~Hz}), 3.98(1 \mathrm{H}, \mathrm{dd}, J 11,5.5 \mathrm{~Hz})$, $4.08(1 \mathrm{H}, \mathrm{dd}, J 11,3 \mathrm{~Hz}), 4.40(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.42(1 \mathrm{H}, \mathrm{d}$, $J 12 \mathrm{~Hz}$), and $7.26\left(5 \mathrm{H}\right.$, br s); $v_{\text {max. }} 3430,2955,1727,1481$, $1455,1282,1157,734$, and $698 \mathrm{~cm}^{-1}$; and recovered diol (15) ($33 \mathrm{mg}, 6 \%$). A mixture of esters ($\mathbf{1 6 a}$) and ($\mathbf{1 6 c}$), obtained as undesired by-products, was reduced with LAH (50 mg) in THF $(5 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ for 1 h . Usual work-up afforded diol (15) (246 mg, 98%). Using the combined recovered quantities of diol (15), the procedure was repeated twice to give the required monoester (16b) $[573 \mathrm{mg}, 89 \% ; 91 \%$ conversion of diol (15)].

Chloroacetate (17) of $(\mathbf{1 6 b}) .-\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 ml) of monoester ($\mathbf{1 6 b}$) $(682 \mathrm{mg})$ and pyridine $(0.33 \mathrm{ml})$ was treated
with $\mathrm{ClCH}_{2} \mathrm{COCl}(0.22 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was then diluted with aq. NaHCO_{3} and extracted with hexaneEtOAc (5:1). The extract was washed successively with aq. KHSO_{4}, aq. NaHCO_{3}, and brine. Silica gel column chromatography of the extract yielded the mixed diester (17) as an oil ($746 \mathrm{mg}, 95 \%$) (Found: C, 71.0; H, 9.0. $\mathrm{C}_{34} \mathrm{H}_{51} \mathrm{ClO}_{5}$ requires: C, $70.99 ; \mathrm{H}, 8.94 \%$); $m / z 574$ and $576\left(3: 1 ; M^{+}\right) ;[\alpha]_{\mathrm{D}}^{25}-18.2^{\circ}(c$ 2.09 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.85(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}$, d, $J 7 \mathrm{~Hz}$), $1.19(9 \mathrm{H}, \mathrm{s}), 1.60(3 \mathrm{H}, \mathrm{br}$ s), $2.69(1 \mathrm{H}, \mathrm{br}$ m), $3.09(1$ $\mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 3.25(1 \mathrm{H}, \mathrm{dd}, J 9,4.5 \mathrm{~Hz}), 3.88(2 \mathrm{H}, \mathrm{m}), 4.02(2 \mathrm{H}$, s), $4.15(2 \mathrm{H}, \mathrm{m}), 4.40(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz}), 4.43(1 \mathrm{H}, \mathrm{d}, J 12 \mathrm{~Hz})$, and $7.28(5 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}} 11.67(\mathrm{q}), 15.14(\mathrm{q}), 17.04(\mathrm{q}), 22.07(\mathrm{q}), 23.73$ (t, 2 C), $27.20(\mathrm{q}, 3 \mathrm{C}), 34.81(\mathrm{~d}, 2 \mathrm{C}), 37.21(\mathrm{t}), 37.50(\mathrm{t}), 38.67(\mathrm{~s})$, 39.60 (t), 40.77 (t), 43.26 (d), 46.19 (s), 48.34 (d), 53.12 (d), 67.53 $(\mathrm{t}), 68.50(\mathrm{t}), 72.27(\mathrm{t}), 73.05(\mathrm{t}), 127.44(\mathrm{~d}, 3 \mathrm{C}), 128.32(\mathrm{~d}, 2 \mathrm{C})$, 135.01 (s), 135.74 (s), 139.06 (s), 167.23 (s), and 178.12 (s); $v_{\text {max }}$. $2955,1763,1740,1730,1482,1455,1261,1164,1150,980$, 735 , and $697 \mathrm{~cm}^{-1}$

Catalytic Hydrogenolysis of Ether (17) to Alcohol (18).—An EtOH solution (6 ml) of the benzyl ether (17) (355 mg) was hydrogenolysed with $\mathrm{Pd} /$ carbon $(5 \% ; 50 \mathrm{mg})$ at room temperature for 3 h . After removal of the catalyst by filtration, the mixture was heated under reduced pressure and the residue was chromatographed on a silica gel column to give the alcohol (18) as an oil ($298 \mathrm{mg}, 99.5 \%$) (Found: C, 66.8; H, 9.35. C 27^{-} $\mathrm{H}_{45} \mathrm{ClO}_{5}$ requires: $\mathrm{C}, 66.85 ; \mathrm{H}, 9.35 \%$); $m / z 484$ and 486 ($3: 1$; M^{+}); $[\alpha]_{\mathrm{D}}^{18}-10.3^{\circ}\left(c 2.23\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.87(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz})$, $0.91(3 \mathrm{H}, \mathrm{s}), 0.94(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.19(9 \mathrm{H}, \mathrm{s}), 1.62(3 \mathrm{H}, \mathrm{br}$ s), $2.72(1 \mathrm{H}, \mathrm{br}$ m), $3.23(1 \mathrm{H}$, br dd, $J 11,8 \mathrm{~Hz}), 3.49(1 \mathrm{H}$, br dd, J $11,6 \mathrm{~Hz}), 3.89(2 \mathrm{H}, \mathrm{m}), 4.05(2 \mathrm{H}, \mathrm{s})$, and $4.15(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 11.62$ $(\mathrm{q}), 15.14(\mathrm{q}), 16.50(\mathrm{q}), 22.17(\mathrm{q}), 23.34(\mathrm{t}), 23.73(\mathrm{t}), 27.20(\mathrm{q}, 3$ C), 34.77 (d), 37.06 (d), 37.30 (t), 37.50 (t), 38.77 (s$), 39.70$ (t), 40.87 (t), 43.36 (d), 46.24 (s), 48.29 (d), 53.17 (d), 64.50 (t$), 67.68$ $(\mathrm{t}), 68.65(\mathrm{t}), 135.53(\mathrm{~s}), 136.03(\mathrm{~s}), 167.52(\mathrm{~s})$, and $178.56(\mathrm{~s}) ; \mathrm{v}_{\text {max. }}$ 3430,2 955, 1 764, 1 742, 1 722, $1452,1280,1$ 164, 1 145, 1023 , 978 , and $788 \mathrm{~cm}^{-1}$.

Swern Oxidation of Alcohol (18) to Aldehyde (19).-To a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (8 ml) of $(\mathrm{COCl})_{2}(0.15 \mathrm{ml})$ at $-80^{\circ} \mathrm{C}$ was added dropwise a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (0.5 ml) of DMSO (0.24 ml) and the mixture was stirred at -80 to $-70^{\circ} \mathrm{C}$ for 15 min . To this mixture was added a $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (4 ml) of alcohol (18) (522 mg). After the mixture had been stirred for 30 min at -70 to $-60^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}(1.5 \mathrm{ml})$ was added and the mixture was gradually warmed to $-10^{\circ} \mathrm{C}$. The mixture was then diluted with aq. NaHCO_{3} and extracted with ether. The extract was chromatographed on a silica gel column to give aldehyde (19) as an oil ($499 \mathrm{mg}, 95 \%$) (Found: 67.2; H, 8.95. $\mathrm{C}_{27} \mathrm{H}_{43} \mathrm{ClO}_{5}$ requires: $\mathrm{C}, 67.13 ; \mathrm{H}, 8.97 \%$); $[\chi]_{\mathrm{D}}^{16}-43.3^{\circ}\left(c 1.94\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}} 0.88(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.92(3 \mathrm{H}, \mathrm{s}), 1.02(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.19(9$ $\mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{br}$ s), $2.66(1 \mathrm{H}$, qdd, $J 7,4,1 \mathrm{~Hz}), 3.01(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}), 3.89(2 \mathrm{H}, \mathrm{m}), 4.07(2 \mathrm{H}, \mathrm{s}), 4.17(2 \mathrm{H}, \mathrm{br} \mathrm{d}, J 5.5 \mathrm{~Hz})$, and 9.58 $(1 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}) ; \delta_{\mathrm{c}} 11.65(\mathrm{q}, 2 \mathrm{C}), 15.18(\mathrm{q}), 22.00(\mathrm{q}), 23.65(\mathrm{t})$, 25.30 (t), 27.18 (q, 3 C), 34.83 (d), 37.12 (t$), 37.77$ (t), 38.77 (s$)$, 39.65 (t), 40.83 (t), 43.18 (d), 46.42 (s), 48.30 (d), 48.65 (d), 51.89 (d), 67.42 (t$), 68.48(\mathrm{t}), 133.77$ (s$), 137.60(\mathrm{~s}), 167.36(\mathrm{~s}), 178.19(\mathrm{~s})$ and 205.60 (d); $v_{\text {max. }} 2950,2720,1760,1722,1480,1455$, $1280,1165,1148$, and $982 \mathrm{~cm}^{-1}$.

TMS Etherification of Aldehyde (19) to TMS Vinyl Ether (20).- $\mathrm{A} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution (5 ml) of aldehyde (19) $(318 \mathrm{mg})$ was treated with $\mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{TMS}(0.22 \mathrm{ml})$ in the presence of $\mathrm{Et}_{3} \mathrm{~N}$ $(0.18 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ for 48 h . The mixture was poured into aq. NaHCO_{3} and extracted with hexane-EtOAc (20:1). The extract was chromatographed on a Florisil column to give compound (20) as an oil ($358 \mathrm{mg}, 98 \%$) (an isomeric mixture, $E: Z 5: 2$) (Found: C, 65.1; H, 9.3. $\mathrm{C}_{30} \mathrm{H}_{51} \mathrm{ClO}_{5} \mathrm{Si}$ requires:
$\mathrm{C}, 64.89 ; \mathrm{H}, 9.26 \%) ; \delta_{\mathrm{H}} 0.15$ and $0.17(2: 5 ; 9 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{d}$, $J 7 \mathrm{~Hz}), 0.87(3 \mathrm{H}, \mathrm{s}), 1.19(9 \mathrm{H}, \mathrm{s}), 1.47$ and $1.55(2: 5 ; 3 \mathrm{H}, \mathrm{d}$, $J 1 \mathrm{~Hz}), 1.64(3 \mathrm{H}, \mathrm{br}$ s), $3.14(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{m}), 4.03$ $(2 \mathrm{H}, \mathrm{s}), 4.13(2 \mathrm{H}, \mathrm{m})$, and $6.01(1 \mathrm{H}, \mathrm{m}) ; \mathrm{v}_{\text {max. }} 2955,1766$, $1732,1658,1481,1281,1252,1156,880$, and $842 \mathrm{~cm}^{-1}$.
$\mathrm{Pd}(\mathrm{OAc})_{2}$ Oxidation of Vinyl Ether (20) to Enal (21).-A $\mathrm{CH}_{3} \mathrm{CN}$ solution (5 ml) of the silylvinyl ether ($\mathbf{2 0}$) $(580 \mathrm{mg}$) was treated with $\mathrm{Pd}(\mathrm{OAc})_{2}(280 \mathrm{mg})$ at room temperature for 12 h . The mixture was diluted with hexane-EtOAc (2:1) and metallic solid was removed by filtration. The filtrate was washed with aq. NaHCO_{3} and dried over MgSO_{4}. The residue obtained by evaporation of the solvent under reduced pressure was chromatographed on a silica gel column to give enal (21) as needles ($470 \mathrm{mg}, 94 \%$), m.p. $55-55.5^{\circ} \mathrm{C}$ (Found: C, $67.2 ; \mathrm{H}$, 8.55. $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{ClO}_{5}$ requires: C, $67.41 ; \mathrm{H}, 8.59 \%$); $m / z 480$ and $482\left(3: 1 ; M^{+}\right) ;[\alpha]_{\mathrm{D}}^{22}+5^{\circ}\left(c 2.19\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.85(3 \mathrm{H}, \mathrm{s})$, $0.86(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.19(3 \mathrm{H}, \mathrm{s}), 1.71(3 \mathrm{H}, \mathrm{br}$ s), $3.76(1 \mathrm{H}, \mathrm{br}$ $\mathrm{m}), 3.88(2 \mathrm{H}, \mathrm{m}), 4.02(2 \mathrm{H}, \mathrm{s}), 4.12(2 \mathrm{H}, \mathrm{m}), 5.96(2 \mathrm{H}, \mathrm{m})$, and $9.58(1 \mathrm{H}, \mathrm{s}) ; \delta_{\mathrm{C}} 11.56(\mathrm{q}), 15.16(\mathrm{q}), 21.97(\mathrm{q}), 23.54(\mathrm{t}), 27.21(\mathrm{q}$, 3 C), 30.31 (t), 34.66 (d), 36.44 (t), 38.06 (t$), 38.80$ (s$), 39.67$ (t), $40.82(\mathrm{t}), 43.34(\mathrm{~d}), 45.87$ (s), 47.07 (d), 48.32 (d), 67.69 (t$), 68.55$ (t), 133.43 (s), 133.80 (t$), 138.50$ (s), 152.67 (s), 167.29 (s$), 178.47$ (s), and 194.90 (d); $v_{\text {max. }} 2950,1755,1726,1680,1308,1280$, 1160,983 , and $972 \mathrm{~cm}^{-1}$.

Reduction of Enal (21) with NaBH_{4} and CeCl_{3} to Allyl Alcohol (22).-To an MeOH solution (4 ml) of enal (21) (156 mg) were added $\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(100 \mathrm{mg})$ and $\mathrm{NaBH}_{4}(10 \mathrm{mg})$ and the mixture was stirred for 10 min at $0^{\circ} \mathrm{C}$. Further additions of the reagents were repeated 5 times after every 10 min . The mixture was then diluted with 0.5 M HCl and extracted with EtOAc. Silica gel column chromatography of the extract afforded allyl alcohol (22) as an oil ($122 \mathrm{mg}, 93 \%$) (Found: C, 73.7; $\mathrm{H}, 10.55 . \mathrm{C}_{25} \mathrm{H}_{42} \mathrm{O}_{4}$ requires: C, $73.85 ; \mathrm{H}, 10.41 \%$); $m / z 406$ $\left(M^{+}\right) ;[\alpha]_{\mathrm{D}}^{21}+22.8^{\circ}\left(c 1.62\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.88(3 \mathrm{H}, \mathrm{s}), 0.89(3$ $\mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.20(9 \mathrm{H}, \mathrm{s}), 1.68(3 \mathrm{H}, \mathrm{br}), 3.42(1 \mathrm{H}, \mathrm{brm}), 3.49$ $(1 \mathrm{H}$, br dd, $J 11,5.5 \mathrm{~Hz}), 3.67(1 \mathrm{H}$, br dd, $J 11,6 \mathrm{~Hz}), 3.79(1 \mathrm{H}$, dd, $J 11,7 \mathrm{~Hz}$), $4.01(2 \mathrm{H}, \mathrm{s}), 4.02(1 \mathrm{H}$, br dd, $J 11,5.5 \mathrm{~Hz}), 4.71(1$ $\mathrm{H}, \mathrm{br} \mathrm{s})$, and $5.00(1 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 12.35(\mathrm{q}), 15.10(\mathrm{q}), 21.71(\mathrm{q}), 24.23$ (t), 27.23 (q, 3 C), 29.30 (t), 35.62 (d), 36.92 (t), 38.57 (t), $38.85(\mathrm{~s})$, 40.72 (t), 43.77 (d), 45.72 (s$), 51.98$ (d), 53.35 (d), 64.38 (t$), 64.72$ (t), $69.00(\mathrm{t}), 109.26$ (t), 134.70 (s), 136.96 (s), 151.54 (s), and 178.81 (s); $v_{\text {max. }} 3350,2950,1720,1481,1457,1283,1160$, 1030 , and $896 \mathrm{~cm}^{-1}$.

Swern Oxidation of Allyl Alcohol (22) to Dial (23).-In a similar manner as the conversion of (18) into (19), allyl alcohol (22) (122 mg) was converted, using (COCl$)_{2}(0.06 \mathrm{ml})$, DMSO $(0.1 \mathrm{ml})$, and $\mathrm{Et}_{3} \mathrm{~N}(0.75 \mathrm{ml})$, into dial (23), which was obtained as an oil ($103 \mathrm{mg}, 93 \%$) (Found: C, 74.1; H, 9.5. $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{4}$ requires: $\mathrm{C}, 74.59 ; \mathrm{H}, 9.51 \%)$; $[\alpha]_{\mathrm{D}}^{21}-21.1^{\circ}\left(c 1.61\right.$ in $\left.\mathrm{CHCl}_{3}\right)$; $\delta_{\mathrm{H}} 0.88(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.96(3 \mathrm{H}, \mathrm{s}), 1.19(9 \mathrm{H}, \mathrm{s}), 1.75(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.76(1 \mathrm{H}, \mathrm{dd}, J 11,6.5 \mathrm{~Hz}), 3.77$ (1 H, br m), $3.93(1 \mathrm{H}$, dd, $J 11,6$ $\mathrm{Hz}), 5.98(2 \mathrm{H}, \mathrm{m}), 9.59(1 \mathrm{H}, \mathrm{s})$, and $9.65(1 \mathrm{H}, \mathrm{d}, J 3 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 13.53$ $(\mathrm{q}), 15.26(\mathrm{q}), 23.12(\mathrm{q}), 25.73(\mathrm{t}), 27.18(\mathrm{q}, 3 \mathrm{C}), 30.21(\mathrm{t}), 36.03$ (d), 36.49 (t), 38.13 (t), 38.79 (s), 40.07 (t), 40.34 (d), 47.05 (d), 48.93 (s), 62.88 (d), 67.82 (t), 132.74 (s$), 133.88$ (t), 139.36 (s), 152.46 (s), 178.27 (s), 194.77 (d), and 204.92 (d); $v_{\text {max. }} 2960$, $2710,1728,1695,1618,1482,1456,1283$, and $1157 \mathrm{~cm}^{-1}$.
TiCl_{2}-Mediated Cyclization of Dial (23) to Glycol (24).-To a mixture of TiCl_{2} [prepared from $\mathrm{TiCl}_{4}(0.28 \mathrm{ml})$ and Zn dust $(350 \mathrm{mg})]$ and pyridine $(0.21 \mathrm{ml})$ in THF (50 ml) was added dropwise a THF solution (30 ml) of compound (23) (103 mg) at room temperature during 3 h . The mixture was then treated with aq. $\mathrm{K}_{2} \mathrm{CO}_{3}$ and extracted with hexane-EtOAc (5:1). The extract was chromatographed on a silica gel column to give the
glycol (24) as an oil ($99 \mathrm{mg}, 96 \%$) (Found: C, $74.1 ; \mathrm{H}, 10.1$. $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{O}_{4}$ requires: C, $74.22 ; \mathrm{H}, 9.96 \%$); $[\alpha]_{\mathrm{D}}^{22}+74.7^{\circ}(c 0.91$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.81(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.20(9 \mathrm{H}, \mathrm{s})$, $1.64(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 3.23(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.64(1 \mathrm{H}, \mathrm{dd}, J 8.5,8 \mathrm{~Hz}), 3.77(1$ $\mathrm{H}, \mathrm{d}, J 8.5 \mathrm{~Hz}), 3.86(1 \mathrm{H}, \mathrm{dd}, J 10.5,7.5 \mathrm{~Hz}), 3.92(1 \mathrm{H}, \mathrm{dd}, J 10.5$, $7.5 \mathrm{~Hz}), 5.04(1 \mathrm{H}, \mathrm{br} s)$, and $5.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}) ; \delta_{\mathrm{C}} 10.42(\mathrm{q}), 14.69$ (q), 21.24 (q), 21.57 (t), 27.24 (q, 3 C), 32.11 (t), 36.03 (d), 37.28 (t), 38.70 (t), 38.80 (s), 41.34 (d), 43.99 (s), 45.76 (t), 50.47 (d), 50.88 (d), 69.46 (t), 74.94 (d), 80.80 (d), 115.59 (t), 134.73 (s$)$, 136.44 (s), 151.56 (s), and $178.83(\mathrm{~s}) ; v_{\text {max. }} 3475,2955,1727$. $1705,1644,1481,1283,1165,1035$, and $904 \mathrm{~cm}^{-1}$.

Diacetate (25) of Glycol (24).-A pyridine solution (2 ml) of glycol (24) $(126 \mathrm{mg})$ and DMAP (10 mg) was treated with $\mathrm{Ac}_{2} \mathrm{O}$ $(0.15 \mathrm{ml})$ at $0^{\circ} \mathrm{C}$ for 2 h . The mixture was then diluted with aq. NaHCO_{3} and extracted with hexane-EtOAc (10:1). Silica gel column chromatography of the extract gave diacetate (25) as an oil ($142 \mathrm{mg}, 93 \%$) (Found: C, 71.1; H, 9.3. $\mathrm{C}_{29} \mathrm{H}_{44} \mathrm{O}_{6}$ requires: C, $71.28 ; \mathrm{H}, 9.08 \%$); m/z $488\left(M^{+}\right) ;[\alpha]_{\mathrm{D}}^{25}+76.8^{\circ}$ (c 0.69 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.86(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 0.89(3 \mathrm{H}, \mathrm{s}), 1.20(9 \mathrm{H}, \mathrm{s}), 1.66$ ($3 \mathrm{H}, \mathrm{br} \mathrm{s}$), $2.00(3 \mathrm{H}, \mathrm{s}), 2.06(3 \mathrm{H}, \mathrm{s}), 3.26(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.70$ $(1 \mathrm{H}, \mathrm{dd}, J 10.5,9 \mathrm{~Hz}), 3.96(1 \mathrm{H}, \mathrm{dd}, J 10.5,6 \mathrm{~Hz}), 5.14(1 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.20(1 \mathrm{H}, \mathrm{d}, J 9 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz})$, and $5.43(1 \mathrm{H}, \mathrm{br} \mathrm{s})$; $\delta_{\mathrm{C}} 10.45(\mathrm{q}), 14.80(\mathrm{q}), 20.64(\mathrm{q}), 21.15(\mathrm{q}), 21.26(\mathrm{q}), 21.33(\mathrm{t})$, 27.38 (q, 3 C), 32.72 (t), 35.37 (d), 37.30 (t), 38.63 (t), 38.93 (s$)$, 42.90 (d), 44.53 (s$), 45.83$ (t), 49.67 (d), 49.94 (d), 69.35 (t$), 74.10$ (d), 80.57 (d), 119.08 (t), 135.27 (s), 135.99 (s), 146.44 (s), 169.98 (s), $170.56(\mathrm{~s})$, and $178.56(\mathrm{~s}) ; v_{\text {max }} 2955,1740,1730,1646$, $1481,1371,1240,1150$, and $1021 \mathrm{~cm}^{-1}$.

Birch Reduction of Diacetate (25) to give Compounds (26)-(29).-Li metal (50 mg) was dissolved in a mixture of liq. NH_{3} (20 ml) and THF $(15 \mathrm{ml})$ at $-78^{\circ} \mathrm{C}$. Into this blue-coloured solution was added a THF solution (5 ml) of diacetate (25) $(137 \mathrm{mg})$ together with $\mathrm{EtOH}(0.5 \mathrm{ml})$. After the mixture had been stirred for 1 h at $-78^{\circ} \mathrm{C}$, an excess of $\mathrm{NH}_{4} \mathrm{Cl}$ (solid) was added and NH_{3} was removed in a hood. The residue was diluted with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with ether. Silica gel column chromatography of the extract afforded a mixture of dienols (26)-(28), and a diol (29) as an oil ($3 \mathrm{mg}, 4 \%$) (Found: C, 78.7 ; $\mathrm{H}, 10.8 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{2}$ requires: $\mathrm{C}, 78.90 ; \mathrm{H}, 10.84 \%$); m/z 304 $\left(M^{+}\right) ; \delta_{\mathrm{H}} 0.78(3 \mathrm{H}, \mathrm{s}), 0.84(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.59(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $1.62(3 \mathrm{H}, \mathrm{d}, J 1 \mathrm{~Hz}), 2.39(1 \mathrm{H}, \mathrm{d}, J 14.5 \mathrm{~Hz}), 3.35(1 \mathrm{H}, \mathrm{dd}$, $J 10.5,8.5 \mathrm{~Hz}$), $3.51(1 \mathrm{H}, \mathrm{dd}, J 10.5,5.5 \mathrm{~Hz}), 3.57(1 \mathrm{H}, \mathrm{br}, \mathrm{m})$, $4.58(1 \mathrm{H}, \mathrm{dd}, J 9.5,7.5 \mathrm{~Hz})$, and $5.38(1 \mathrm{H}$, br d, $J 7.5 \mathrm{~Hz}) ; \delta_{\mathrm{C}}$ $10.97(\mathrm{q}), 14.59(\mathrm{q}), 18.08(\mathrm{q}), 20.06(\mathrm{q}), 21.67(\mathrm{t}), 25.66(\mathrm{t}), 37.19$ (t), 37.34 (t), 39.02 (d), 39.78 (d), 44.15 (s), 44.23 (t), 50.39 (d), 59.31 (d), 67.63 (t), 69.98 (d), 133.18 (d), 133.91 (s), 134.37 (s), and $136.37(\mathrm{~s}) ; v_{\text {max. }} 3335,2955,2920,1450,1380$, and 1037 cm^{-1}.
The mixture of products (26)-(28) was separated by highpressure liquid chromatography (h.p.l.c.) [Micropolasil/hexaneEtOAc (25:2)] to give the required dienol (26) as an oil (61 mg , 76%) (Found: $\mathrm{C}, 83.4 ; \mathrm{H}, 11.4 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}$ requires: $\mathrm{C}, 83.27 ; \mathrm{H}$, $11.18 \%) ; m / z 288\left(M^{+}\right) ;[\alpha]_{\mathrm{D}}^{25}+218^{\circ}\left(c 1.61\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.71$ $(3 \mathrm{H}, \mathrm{s}), 0.83(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.57(3 \mathrm{H}, \mathrm{br}$ s), $1.64(3 \mathrm{H}, \mathrm{br}$ s), 2.06 $(1 \mathrm{H}, \mathrm{ddd}, J 14,10.5,9.5 \mathrm{~Hz}), 2.26(2 \mathrm{H}$, br m$), 2.39(1 \mathrm{H}, \mathrm{d}$, $J 14.5 \mathrm{~Hz}), 3.46(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 3.70(1 \mathrm{H}, \mathrm{brm})$, and $5.47(1 \mathrm{H}$, $\mathrm{br} \mathrm{t}, J 7.5 \mathrm{~Hz}) ; \delta_{\mathrm{c}} 10.41(\mathrm{q}), 14.66(\mathrm{q}), 17.25(\mathrm{q}), 20.17(\mathrm{q}), 20.17$ (t), 24.62 (t), $25.54(\mathrm{t}), 35.92$ (d), 37.42 (t), 37.54 (t), 42.42 (d), 42.50 (t), 44.39 (s), 49.27 (d), 54.63 (d), 68.10 (t), 126.50 (d), 133.19 (s), 136.87 (s), and 137.12 (s); $v_{\text {max. }} 3330,2950,2870$, $1658,1450,1381,1042,1020$, and $837 \mathrm{~cm}^{-1}$; dienol (27) as an oil ($8 \mathrm{mg}, 10 \%$) (Found: $M^{+}, 288.2454 . \mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}$ requires: M, 288.2452); $\delta_{\mathrm{H}} 0.74(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 0.84(3 \mathrm{H}, \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $3.11(1 \mathrm{H}, \mathrm{br}$ m), $3.42(2 \mathrm{H}, \mathrm{brd}, J 7 \mathrm{~Hz}), 4.80(1 \mathrm{H}, \mathrm{m})$, and 4.83 $(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 1.5 \mathrm{~Hz})$; $v_{\text {max }} 3360,2920,2870,1445,1380,1040$,
and $895 \mathrm{~cm}^{-1}$; and dienol (28) as an oil ($6 \mathrm{mg}, 7 \%$) (Found: M^{+}, 288.2454); $\delta_{\mathrm{H}} 0.80(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.13(3 \mathrm{H}, \mathrm{d}$, $J 7.5 \mathrm{~Hz}), 1.71(3 \mathrm{H}, \mathrm{br}$ s), $2.18(1 \mathrm{H}$, ddd, $J 11,9.5,1 \mathrm{~Hz}), 2.39$ $(1 \mathrm{H}, \mathrm{d}, J 13.5 \mathrm{~Hz}), 2.52(1 \mathrm{H}$, dqd, $J 9,7.5,4.5 \mathrm{~Hz}), 2.66$ $(1 \mathrm{H}, \mathrm{br}$ m), $3.46(1 \mathrm{H}, \mathrm{dd}, J 10.5,6.5 \mathrm{~Hz}), 3.54(1 \mathrm{H}, \mathrm{dd}, J 10.5$, $5.5 \mathrm{~Hz}), 5.32(1 \mathrm{H}$, dd, $J 11,9.5 \mathrm{~Hz})$, and $5.86(1 \mathrm{H}$, ddd, $J 11,9$, 1 Hz); $v_{\text {max }} 3320,2955,2925,2870,1452,1376,1035,1024$, and $718 \mathrm{~cm}^{-1}$.

Attempted Reduction of Diol (29) via its Diacetate (30).-A pyridine solution (0.5 ml) of diol (29) (29 mg) was treated with $\mathrm{Ac}_{2} \mathrm{O}(0.3 \mathrm{ml})$ at room temperature for 12 h . The mixture was then diluted with aq. NaHCO_{3} and extracted with hexaneEtOAc (3:1). The extract was purified by silica gel column chromatography to give diacetate (30) as an oil ($37 \mathrm{mg}, 99.5 \%$) (Found: C, 74.3; $\mathrm{H}, 9.5 . \mathrm{C}_{24} \mathrm{H}_{36} \mathrm{O}_{4}$ requires: $\mathrm{C}, 74.19 ; \mathrm{H}, 9.34 \%$); $m / z 388\left(M^{+}\right) ; \delta_{\mathrm{H}} 0.84(3 \mathrm{H}, \mathrm{s}), 0.87(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.59(3 \mathrm{H}$, br s), $1.63(3 \mathrm{H}, \mathrm{br}$ s), $2.04(3 \mathrm{H}, \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{s}), 2.42(1 \mathrm{H}, \mathrm{d}$, $J 14.5 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 3.81(1 \mathrm{H}, \mathrm{dd}, J 11,7 \mathrm{~Hz}), 3.89$ $(1 \mathrm{H}, \mathrm{dd}, J 11,8 \mathrm{~Hz}), 5.31(1 \mathrm{H}, \mathrm{br} \mathrm{d}, J 7 \mathrm{~Hz})$, and $5.78(1 \mathrm{H}, \mathrm{dd}$, $J 10,7 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 9.98$ (q), $14.56(\mathrm{q}), 17.97(\mathrm{q}), 19.96(\mathrm{q}), 20.98$ (q, 2 C), 21.27 (t), 25.76 (t), 34.47 (d), 37.13 (t$), 37.29$ (t$), 40.32$ (d), 44.13 (s), 44.40 (t), 50.19 (d), 57.38 (d), 69.07 (t), 72.14 (d), 128.97 (d), 134.42 (s), 135.69 (s), 135.83 (s), 170.52 (s), and 171.14 (s); $v_{\text {max. }} 2955,1740,1448,1372,1240,1036$, and $958 \mathrm{~cm}^{-1}$, which was reduced with Li in liq. $\mathrm{NH}_{3}-\mathrm{THF}$ as described above. Although traces of compound (26) were detected on t.l.c., the diol (29) ($28 \mathrm{mg}, 97 \%$) was recovered after chromatographic purification.

Malonate Synthesis from Dienol (26) to Diester (32) via the Tosyl Derivative (31).-To a pyridine solution (1 ml) of compound (26) (21 mg) and DMAP (5 mg) was added $\mathrm{TsCl}(40$ mg) at room temperature and the solution was stirred for 6 h . The mixture was then diluted with aq. NaHCO_{3} and extracted with hexane-EtOAc (3:1). The organic layer was successively washed with aq. KHSO_{4}, aq. NaHCO_{3}, and brine. Removal of the solvents afforded essentially pure tosyl ester (31) as an oil ($32 \mathrm{mg}, 100 \%$); $\delta_{\mathrm{H}} 0.65(3 \mathrm{H}, \mathrm{s}), 0.79(3 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 1.55(3 \mathrm{H}, \mathrm{d}$, $J 1 \mathrm{~Hz}), 1.63(3 \mathrm{H}, \mathrm{br}$ s), $2.26(2 \mathrm{H}, \mathrm{br}$ m), $2.35(1 \mathrm{H}, \mathrm{d}, J 15 \mathrm{~Hz})$, $2.45(3 \mathrm{H}, \mathrm{s}), 3.65(1 \mathrm{H}, \mathrm{br}, \mathrm{m}), 3.83(2 \mathrm{H}, \mathrm{d}, J 7 \mathrm{~Hz}), 5.40(1 \mathrm{H}, \mathrm{brt}$, $J 8 \mathrm{~Hz}), 7.34(2 \mathrm{H}, \mathrm{dm}, J 8 \mathrm{~Hz})$, and $7.79(2 \mathrm{H}, \mathrm{dm}, J 8 \mathrm{~Hz})$.

Without further purification, compound (31) (32 mg) was treated with dimethyl sodiomalonate [prepared from dimethyl malonate (0.15 ml) and $55 \% \mathrm{NaH}$ (50 mg , dispersed in an oil)] in DMF (4 ml) at $100^{\circ} \mathrm{C}$ for 5 h . The mixture was then diluted with aq. NaHCO_{3} and extracted with hexane-EtOAc (3:1). Silica gel column chromatography of the extract afforded diester (32) as an oil ($24 \mathrm{mg}, 81 \%$) (Found: C, 74.6; H, 9.55. $\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{O}_{4}$ requires: C, $74.59 ; \mathrm{H}, 9.51 \%) ; m / z 402\left(M^{+}\right) ;[\alpha]_{\mathrm{D}}^{25}+159^{\circ}(c$ 1.80 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.70(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.55(3 \mathrm{H}$, d, $J 1 \mathrm{~Hz}), 1.63(3 \mathrm{H}, \mathrm{br}$ s), $2.37(1 \mathrm{H}, \mathrm{d}, J 14.5 \mathrm{~Hz}), 3.47(1 \mathrm{H}, \mathrm{t}, J$ $7.5 \mathrm{~Hz}), 3.68(1 \mathrm{H}, \mathrm{brm}), 3.73(3 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s})$, and $5.44(1 \mathrm{H}$, br t, $J 8 \mathrm{~Hz}$); $\delta_{\mathrm{C}} 13.13(\mathrm{q}), 14.66(\mathrm{q}), 17.26(\mathrm{q}), 19.97(\mathrm{t}), 20.17(\mathrm{q})$, 24.55 (t), 25.51 (t), 30.48 (t), 35.55 (d), 37.44 (t$), 37.57$ (t$), 42.30$ (d), 44.58 (s), 45.20 (t), 49.27 (d), 49.91 (d), 52.40 (q), 52.48 (q), 54.56 (d), 126.38 (d), 133.19 (s), 136.89 (s), 137.07 (s), 170.09 (s), and $170.19(\mathrm{~s}) ; v_{\text {max. }} 2955,2870,1758,1739,1435,1235$, 1148 , and $833 \mathrm{~cm}^{-1}$.

Decarboxylation of Diester (32) to Monoester (33).—A DMF solution (0.5 ml) of compound (32) (23.6 mg) was treated with $\mathrm{NaCN}(13 \mathrm{mg})$ at $160^{\circ} \mathrm{C}$ for 30 min . The mixture was diluted with 1 m HCl and extracted with EtOAc. After removal of the solvents, the residue was treated with an excess of an ethereal solution of $\mathrm{CH}_{2} \mathrm{~N}_{2}$. Chromatographic purification via a silica gel column gave ester (33) as an oil ($14.4 \mathrm{mg}, 71 \%$) (Found: C, 80.1; $\mathrm{H}, 10.7 . \mathrm{C}_{23} \mathrm{H}_{36} \mathrm{O}_{2}$ requires: $\mathrm{C}, 80.18 ; \mathrm{H}, 10.53 \%$); $m / z 344$
$\left(M^{+}\right) ;[\alpha]_{\mathrm{D}}^{27}+185^{\circ}\left(c 0.78\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.69(3 \mathrm{H}, \mathrm{s}), 0.79$ $(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.03(1 \mathrm{H}$, ddd, $J 13.5,10.5,9 \mathrm{~Hz}), 2.37(1 \mathrm{H}, \mathrm{d}, J 13.5 \mathrm{~Hz}), 3.67(3 \mathrm{H}, \mathrm{s}), 3.68$ $\left(1 \mathrm{H}\right.$, br m), and $5.46(1 \mathrm{H}$, br t, $J 8.5 \mathrm{~Hz}) ; \delta_{\mathrm{c}} 13.16(\mathrm{q}), 14.67(\mathrm{q})$, $17.28(\mathrm{q}), 20.10(\mathrm{t}), 20.19(\mathrm{q}), 24.64(\mathrm{t}), 25.54(\mathrm{t}), 31.76(\mathrm{t}), 32.25$ (t), 32.56 (d), 37.45 (t), 37.62 (t), 42.36 (d), 44.56 (s), $45.50(\mathrm{t})$, 49.29 (d), 51.47 (q), 54.66 (d), 126.53 (d), 133.13 (s), 136.83 (s), $137.19(\mathrm{~s})$, and $174.52(\mathrm{~s}) ; v_{\text {max. }} 2955,2875,1743,1436,1382$, and $1170 \mathrm{~cm}^{-1}$.

LAH Reduction of Ester (33) to Alcohol (34).-A THF solution (2 ml) of compound ($\mathbf{3 3)}$) $(23.9 \mathrm{mg}$) was treated with LAH (5 mg) at room temperature for 30 min . The mixture was then diluted with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with EtOAc. Silica gel column chromatography of the extract afforded alcohol (34) as an oil ($22.0 \mathrm{mg}, 100 \%$) (Found: C, 83.4; H, 11.6. $\mathrm{C}_{22} \mathrm{H}_{36} \mathrm{O}$ requires: $\mathrm{C}, 83.48 ; \mathrm{H}, 11.46 \%) ; m / z 316\left(M^{+}\right) ;[\alpha]_{\mathrm{D}}^{27}+194^{\circ}(c$ 0.73 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.70(3 \mathrm{H}, \mathrm{s}), 0.79(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.56(3 \mathrm{H}$, $\mathrm{d}, J 1 \mathrm{~Hz}), 1.63(3 \mathrm{H}$, br s $), 2.02(1 \mathrm{H}$, ddd, $J 13.5,10.5,9 \mathrm{~Hz}), 2.26$ $(2 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{d}, J 15 \mathrm{~Hz}), 3.63(2 \mathrm{H}, \mathrm{t}, J 6.5 \mathrm{~Hz}), 3.69(1 \mathrm{H}$, br m), and $5.47(1 \mathrm{H}$, br t, $J 8.5 \mathrm{~Hz}) ; \delta_{\mathrm{C}} 13.72(\mathrm{q}), 14.93(\mathrm{q}), 17.56$ (q), 20.37 (t), 20.44 (q), $24.90(t), 25.80(t), 31.33(t), 32.62(d)$, $33.00(\mathrm{t}), 37.71$ (t$), 37.91$ (t), 42.64 (d), 44.82 (s$), 45.94(\mathrm{t}), 49.54$ (d), 54.93 (d), 63.68 (t), 126.90 (d), 133.32 (s), 137.01 (s), and $137.51(\mathrm{~s}) ; v_{\text {max. }} 3350,2930,2875,1448,1382,1055$, and 837 cm^{-1}.

Wittig Olefination of Compound (34) via the Aldehyde (35). Formation of Ethyl Albolate (36).-With the usual Swern oxidation conditions as described above, compound (34) (10.3 mg) was converted into the aldehyde (35) as an oil ($8.2 \mathrm{mg}, 80 \%$); $\delta_{\mathrm{H}} 0.70(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}), 1.56(3 \mathrm{H}$, br s), 1.63 (3 H , br s), 2.04 (1 H , ddd, $J 14,10.5,9 \mathrm{~Hz}$), $2.26(2 \mathrm{H}, \mathrm{m}), 2.38$ $(1 \mathrm{H}, \mathrm{d}, J 15 \mathrm{~Hz}), 2.44(2 \mathrm{H}, \mathrm{m}), 3.67(1 \mathrm{H}$, br m$), 5.45(1 \mathrm{H}$, br t, $J 8 \mathrm{~Hz})$, and $9.78(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz}) ; v_{\text {max. }} 2955,2925,2875,1728$, $1448,1383,1148$, and $838 \mathrm{~cm}^{-1}$, which was then treated with ethyl 2-(triphenylphosphanylidene)propionate (30 mg) in refluxing benzene (1 ml) for 8 h . After removal of the solvent, the residue was chromatographed on a silica gel column to afford ethyl albolate (36) as an oil ($9.7 \mathrm{mg}, 93 \%$) (Found: M^{+}, 398.3187. $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{2}$ requires: $M, 398.3183$); $[\alpha]_{\mathrm{D}}^{27}+153^{\circ}$ (c 0.15 in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.70(3 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.29$ $(3 \mathrm{H}, \mathrm{t}, J 7 \mathrm{~Hz}), 1.58(3 \mathrm{H}, \mathrm{br}$ s $), 1.64(3 \mathrm{H}, \mathrm{br}$ s), $1.84(3 \mathrm{H}$, br s), $2.03(1 \mathrm{H}, \mathrm{m}), 2.17(2 \mathrm{H}, \mathrm{m}), 2.26(2 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{d}, J 14.5$ $\mathrm{Hz}), 3.69(1 \mathrm{H}$, br m), $4.18(2 \mathrm{H}, \mathrm{q}, J 7 \mathrm{~Hz}), 5.47(1 \mathrm{H}$, br t, $J 8 \mathrm{~Hz})$, and $6.75(1 \mathrm{H}, \mathrm{tm}, J 7.5 \mathrm{~Hz}) ; \delta_{\mathrm{c}} 12.34(\mathrm{q}), 13.23(\mathrm{q}), 14.31(\mathrm{q})$, $14.66(\mathrm{q}), 17.29(\mathrm{q}), 20.13(\mathrm{q}), 20.13(\mathrm{t}), 24.62(\mathrm{t}), 25.53(\mathrm{t}), 26.94$ $(\mathrm{t}), 32.28(\mathrm{~d}), 35.42(\mathrm{t}), 37.45(\mathrm{t}), 37.65(\mathrm{t}), 42.36(\mathrm{~d}), 44.58(\mathrm{~s})$, 45.46 (t), 49.29 (d), 54.66 (d), 60.37 (t), 126.58 (d), 127.56 (s), $133.11(\mathrm{~s}), 136.80(\mathrm{~s}), 137.20(\mathrm{~s}), 142.57(\mathrm{~s})$, and $168.35(\mathrm{~s}) ; v_{\text {max. }}$ $2955,2920,2870,1713,1647,1446,1383$, and $1263 \mathrm{~cm}^{-1}$; and its Z-isomer as an oil ($0.4 \mathrm{mg}, 4 \%$) (Found: $M^{+}, 398.3191$); $\delta_{\mathrm{H}} 0.69(3 \mathrm{H}, \mathrm{s}), 0.79(3 \mathrm{H}, \mathrm{d}, J 6 \mathrm{~Hz}), 1.30(3 \mathrm{H}, \mathrm{t}, J 7.5 \mathrm{~Hz}), 1.57$ (3 H , br s), $1.63(3 \mathrm{H}$, br s), $1.89(3 \mathrm{H}$, br s), $2.26(2 \mathrm{H}, \mathrm{m}), 2.37$ (1 H, d, J 14.5 Hz), $2.46(2 \mathrm{H}, \mathrm{m}), 3.70(1 \mathrm{H}$, br m), $4.20(2 \mathrm{H}, \mathrm{q}$, $J 7.5 \mathrm{~Hz}), 5.46(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J 8 \mathrm{~Hz})$, and $5.91(1 \mathrm{H}, \mathrm{tm}, J 7.5 \mathrm{~Hz})$.

LAH Reduction of Ester (36) to Ceroplastol II (1).-A THF solution $(1.5 \mathrm{ml})$ of ethyl albolate $(\mathbf{3 6})(9.7 \mathrm{mg})$ was treated with LAH (5 mg) at $0^{\circ} \mathrm{C}$ for 30 min . The mixture was then diluted with aq. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with hexane-EtOAc (6:1). The extract was chromatographed on a silica gel column to give ceroplastol II (1) as an oil ($6.5 \mathrm{mg}, 75 \%$); m/z $356\left(M^{+}\right)$; $[\alpha]_{D}^{27}$ $+154^{\circ}\left(c 0.12\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.70(3 \mathrm{H}, \mathrm{s}), 0.79(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz})$, $1.57(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.67(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.05(3 \mathrm{H}, \mathrm{m}), 2.26$ $(2 \mathrm{H}, \mathrm{m}), 2.37(1 \mathrm{H}, \mathrm{d}, J 14.5 \mathrm{~Hz}), 3.69(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.00(2 \mathrm{H}, \mathrm{br} \mathrm{s})$, $5.40(1 \mathrm{H}, \mathrm{tm}, J 7.5 \mathrm{~Hz})$, and $5.47(1 \mathrm{H}$, br t, $J 8 \mathrm{~Hz}) ; \delta_{\mathrm{H}}\left(\mathrm{CCl}_{4}\right)$ $0.68(3 \mathrm{H}, \mathrm{s}), 0.78(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.53(3 \mathrm{H}, \mathrm{br}$ s $), 1.63(6 \mathrm{H}$,
br s), $3.64\left(1 \mathrm{H}, \mathrm{brm}\right.$), $3.88(2 \mathrm{H}, \mathrm{br}$ s $)$, and $5.33(2 \mathrm{H}, \mathrm{m}) ; \delta_{\mathrm{C}} 13.46$ (q), $13.68(\mathrm{q}), 14.66(\mathrm{q}), 17.31(\mathrm{q}), 20.16(\mathrm{q}), 20.16(\mathrm{t}), 24.65(\mathrm{t})$, 25.53 (t), 25.76 (t), 32.08 (d), $36.40(t), 37.45(t), 37.67(t), 42.40$ (d), $44.58(\mathrm{~s}), 45.48(\mathrm{t}), 49.30(\mathrm{~d}), 54.66(\mathrm{~d}), 69.13(\mathrm{t}), 126.68(\mathrm{~d})$, 126.91 (d), 133.07 (s), 134.45 (s), 136.76 (s), and 137.27 (s); $v_{\text {max }}$. 3 300, $2970,2920,2860,1660,1448,1381,1010$, and $839 \mathrm{~cm}^{-1}$.

3,5-Dinitrobenzoate (37) of Ceroplastol II (1).-A pyridine solution $(0.5 \mathrm{ml})$ of synthetic compound (1) $(6.5 \mathrm{mg})$ was treated with 3,5 -dinitrobenzoyl chloride $(15 \mathrm{mg})$ at $0^{\circ} \mathrm{C}$ for 1.5 h . The mixture was then diluted with aq. NaHCO_{3} and extracted with hexane-EtOAc (8:1). The extract was chromatographed on a silica gel column to give the dinitrobenzoate (37) as needles (10 $\mathrm{mg}, 100 \%$), m.p. $116-116.5^{\circ} \mathrm{C}$ (lit., ${ }^{1} 116-118^{\circ} \mathrm{C}$); m/z 550 $\left(M^{+}\right) ;[\alpha]_{\mathrm{D}}^{15}+110^{\circ}\left(c \quad 0.23\right.$ in $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.68(3 \mathrm{H}$, s $), 0.79$ ($3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}$), $1.52(3 \mathrm{H}$, br s), $1.62(3 \mathrm{H}$, br s), 1.77 (3 H , br s), $2.25(2 \mathrm{H}, \mathrm{m}), 2.36(1 \mathrm{H}, \mathrm{d}, J 14.5 \mathrm{~Hz}), 3.61(1 \mathrm{H}, \mathrm{br} \mathrm{m}), 4.82$ $(1 \mathrm{H}$, br d, $J 11.5 \mathrm{~Hz}), 4.86(1 \mathrm{H}$, br d, $J 11.5 \mathrm{~Hz}), 5.35(1 \mathrm{H}$, br t, $J 8 \mathrm{~Hz}), 5.62(1 \mathrm{H}, \mathrm{brt}, J 7.5 \mathrm{~Hz}), 9.15(2 \mathrm{H}, \mathrm{d}, J 2 \mathrm{~Hz})$, and 9.21 $(1 \mathrm{H}, \mathrm{t}, J 2 \mathrm{~Hz}) ; v_{\max .} 3120,2955,2875,1722,1625,1545$, $1448,1343,1292,1168,1073,730$, and $719 \mathrm{~cm}^{-1}$.

Formation of Compound (37) from the 3,5-Dinitrobenzoate (38) of Ceroplastol I.-A refluxing acetone solution (3 ml) of natural compound (38) (50.8 mg) was treated with $\mathrm{TsOH}(15$ mg) for 2 h . The mixture was then diluted with aq. NaHCO_{3} and extracted with ether. The extract was chromatographed on a silica gel column to give the isomeric compound (37) as needles $\left(41.8 \mathrm{mg}, 82^{\circ}\right)$, m.p. $116-116.5^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}^{21}+102.2^{\circ}(c 0.91 \mathrm{in}$ $\left.\left.\mathrm{CHCl}_{3}\right)\right]$, which was identical with the synthetic sample in every respect.

Hydrolysis of Compound (37) from the Natural Source.-A mixed solution of (37) [derived from the natural source (49.3 $\mathrm{mg})$] in $3 \mathrm{~m} \mathrm{NaOH}(0.5 \mathrm{ml})$ and $\mathrm{MeOH}(5 \mathrm{ml})$ was refluxed for 1 h . The mixture was then diluted with water and extracted with ether. Silica gel column chromatography of the extract gave ceroplastol II (1) as an oil $(28.2 \mathrm{mg}, 88 \%) ;[\alpha]_{\mathrm{D}}^{19}+157^{\circ}(c 0.93$ in CHCl_{3}), which was identical with the synthetic sample in every respect.

Saponification of Ethyl Albolate (36). Formation of Albolic Acid (2).-A mixed solution of compound (36) (5.0 mg) in $3 \mathrm{~m} \mathrm{NaOH}(2 \mathrm{ml})$ and $\mathrm{MeOH}(0.2 \mathrm{ml})$ was refluxed for 1 h . The mixture was acidified and then extracted with EtOAc. Silica gel column chromatography of the extract afforded albolic acid (2) as an oil $(4.4 \mathrm{mg}, 95 \%) ; m / z 370\left(M^{+}\right) ;[\alpha]_{\mathrm{D}}^{27}+166^{\circ}(c 0.21 \mathrm{in}$ $\left.\mathrm{CHCl}_{3}\right) ; \delta_{\mathrm{H}} 0.70(3 \mathrm{H}, \mathrm{s}), 0.80(3 \mathrm{H}, \mathrm{d}, J 6.5 \mathrm{~Hz}), 1.56(3 \mathrm{H}, \mathrm{br} \mathrm{s})$, $1.63(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.84(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 2.03(1 \mathrm{H}, \mathrm{m}), 2.2-2.3(4 \mathrm{H}, \mathrm{m})$, $2.38(1 \mathrm{H}, \mathrm{d}, J 15 \mathrm{~Hz}), 3.69(1 \mathrm{H}$, br m$), 5.46(1 \mathrm{H}$, br t, $J 8 \mathrm{~Hz})$, and $6.90(1 \mathrm{H}, \mathrm{tm}, J 7.5 \mathrm{~Hz}) ; \delta_{\mathrm{H}}\left(\mathrm{CCl}_{4}\right) 0.69(3 \mathrm{H}, \mathrm{s}), 0.81(3 \mathrm{H}, \mathrm{d}$, $J 6.5 \mathrm{~Hz}), 1.54(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.63(3 \mathrm{H}, \mathrm{br} \mathrm{s}), 1.82(3 \mathrm{H}$, br s), 3.64 (1 H , br m), $5.40(1 \mathrm{H}$, br t, $J 8 \mathrm{~Hz}$), and $6.86(1 \mathrm{H}$, br t, $J 8 \mathrm{~Hz}$); $\delta_{\mathrm{C}} 12.05(\mathrm{q}), 13.38(\mathrm{q}), 14.66(\mathrm{q}), 17.29(\mathrm{q}), 20.14(\mathrm{q}), 20.14(\mathrm{t})$, 24.62 (t), 25.53 (t$), 27.16$ (t), 32.28 (d), $35.25(\mathrm{t}), 37.45(\mathrm{t}), 37.64$ (t), 42.36 (d), 44.59 (s$), 45.46$ (t$), 49.30$ (d), 54.66 (d), 126.56 (d), 126.65 (s), 133.13 (s), 136.81 (s), 137.20 (s), 145.45 (d), and 172.51 (s); $v_{\text {max. }} 3000,2960,2925,2880,1688,1642,1450,1383$, 1276,1150 , and $834 \mathrm{~cm}^{-1}$.

Acknowledgements

We thank Drs. Ian T. Harrison and Shuyen Harrison, Harrison Research Inc., Palo Alto, for providing us with a valuable sample of the 3,5 -dinitrobenzoate of ceroplastol I. Our sincere thanks are also due to The Nakamura Memorial Science Foundation, Fukuoka, and The Ministry of Education, Science, and Culture of Japan, for grants.

References

1 T. Rios and L. Quijano, Tetrahedron Lett., 1969, 1317.
2 T. Rios and F. Gomez G., Tetrahedron Lett., 1969, 2929.
3 S. Nozoe, M. Morisaki, K. Tsuda, Y. Iitaka, N. Takahashi, S. Tamura, K. Ishibashi, and M. Shirasaka, J. Am. Chem. Soc., 1965, 87, 4968; L. Canonica, A. Fiecchi, M. G. Kienle, and A. Scala, Tetrahedron Lett., 1966, 1329.
4 A. Ballio, M. Brufani, C. G. Casinovi, S. Cerrini, W. Fedeli, R. Pellicciari, B. Santurbano, and A. Viciago, Experientia, 1968, 24, 631;
K. D. Barrow, D. H. R. Barton, E. B. Chain, U. F. W. Ohnsorge, and
R. Thomas, Chem. Commun., 1968, 1198; T. Sassa, Nippon Nogei Kagaku Kaishi (J. Agr. Chem. Soc. Jpn.), 1975, 49, R35.
5 N. Kato, S. Tanaka, and H. Takeshita, Chem. Lett., 1986, 1989.
6 For recent synthetic studies in this area, see G. Mehta and N. Krishnamurthy, J. Chem. Soc., Chem. Commun., 1986, 1319, and references cited therein.
7 N. Kato, K. Nakanishi, and H. Takeshita, Bull. Chem. Soc. Jpn., 1986, 59, 1109.

8 H. Takeshita, T. Hatsui, N. Kato, T. Masuda, and H. Tagoshi, Chem. Lett., 1982, 1153.
9 N. Kato, S. Tanaka, H. Kataoka, and H. Takeshita, Chem. Lett., 1987, 2295.
10 S. Yamasaki, T. Hatsui, and H. Takeshita, Kyushu Daigaku Seisankagaku Kenkyusho Hokoku (Repts. Res. Inst. Ind. Sci., Kyushu Univ.), 1986, 81, 7.
11 H.-J. Schneider, N. Nguyen-Ba, and F. Thomas, Tetrahedron, 1982, 38, 2327.
12 Y. Ito, T. Hirao, and T. Saegusa, J. Org. Chem., 1978, 43, 1011.
13 J. L. Luche, J. Am. Chem. Soc., 1978, 100, 2226.
14 T. Mukaiyama, T. Sato, and J. Hanna, Chem. Lett., 1973, 1041.
15 Y. Iitaka, I. Watanabe, I. T. Harrison, and S. Harrison, J. Am. Chem. Soc., 1968, 90, 1092.
16 Y. Okude, S. Hirao, T. Hiyama, and H. Nazaki, J. Am. Chem. Soc., 1977, 99, 3179.

[^0]: \dagger Part 43: N. Kato, X. Wu, S. Ohbuchi, H. Miyagawa, S. Tanaka, H. Kataoka, T. Imaoka, and H. Takeshita, Kyushu Diagaku Kinou Busshitsu Kagaku Kenkyusho Hokoku, (Repts. Inst. Adv. Material Study, Kyushu Univ.), 1988, 2, in the press.
 \ddagger The contents of the present paper were reported in preliminary form in J. Chem. Soc., Chem. Commun., 1988, 354.
 § The positional numbers and ring letters shown in structure (1) are used throughout.

 - In our preliminary communication, ref. 2, we described the run giving the highest yields for compounds (5) and (6), 88 and 3% respectively.

[^1]: * Although, in the preliminary report, ${ }^{2}$ the glycol moiety was assigned to have cis stereochemistry, the opposite conclusion is more likely judging from vicinal coupling constants.

